Μετάβαση στο κύριο περιεχόμενο

Πως αποδεικνύουμε ότι ένα σώμα κάνει απλή αρμόνική ταλάντωση






Το είδες εδώ, τώρα λίγο πιο αναλυτικά.




Σε ασκήσεις που έχουμε ένα σώμα συνδεδεμένο με ένα ελατήριο και μας ζητείται να αποδείξουμε ότι σώμα εκτελεί απλή αρμονική ταλάντωση δουλεύουμε πάντα έχοντας στο μυαλό μας ότι αρκεί να αποδείξουμε ότι σε μιά τυχαία θέση της κίνησης του σώματος η συνισταμένη δύναμη που ασκείται σε αυτό μπορεί να γραφεί στη μορφή: ΣF=-Dx




Για το σκοπό αυτό ακολουθούμε τα παρακάτω βήματα:


1. Σχεδιάζουμε το ελατήριο στη θέση φυσικού μήκους (ΘΦΜ).

2. Σχεδιάζουμε το σύστημα ελατήριο - σώμα στη θέση ισορροπίας του (Θ.Ι.) και  σχεδιάζουμε τις δυνάμεις που ασκούνται στο σώμα. (γράφουμε:) 

Στη θέση ισορροπίας του συστήματος ισχύει  ΣF=0

Από τη σχέση αυτή για τη συνισταμένη των δυνάμεων στη θέση ισορροπίας προκύπτει μια συνθήκη για τις δυνάμεις που ασκούνται στο σώμα στην κατάσταση ισορροπίας.

Δηλαδη: ΣF =0  ή   mg - Fελ =0   ή   mg = kx1 (1)

3. Σχεδιάζουμε τις δυνάμεις που ασκούνται στο σώμα όταν το σώμα βρίσκεται σε μια τυχαία θέση από τη θέση ισορροπίας.

Από τις δυνάμεις που έχουν τη φορά της απομάκρυνσης από τη θέση ισορροπίας  αφαιρούμε τις δυνάμεις που έχουν αντίθετη φορά.
Υπολογίζουμε την συνισταμένη των δυνάμεων που ασκούνται στο σώμα, χρησιμοποιώντας και τη συνθήκη η οποία προέκυψε από το βήμα 2, και την γράφουμε στη μορφή ΣF=-Dx, όπου x είναι η απομάκρυνση από τη θέση ισορροπίας. Το D αποτελεί τη σταθερά επαναφοράς της ταλάντωσης. 

Στην τυχαία θέση ισχύει: ΣF = mg – F΄ελ = mg – k(x1+x)

Η οποία λόγω της σχέσης (1) γίνεται: ΣF = -kx= -Dx.
Η σχέση αυτή είναι ικανή και αναγκαία συνθήκη για να εκτελεί το σώμα απλή αρμονική ταλάντωση με σταθερά επαναφοράς D = k.




Επίσης, μη ξεχνάς τα παρακάτω (ή αν δεν τα θυμάσαι, μάθε τα τώρα)
  • Η αρχική απομάκρυνση του σώματος από τη θέση ισορροπίας είναι και το πλάτος της ταλάντωσης Α.
  • Η περίοδος της ταλάντωσης Τ δίνεται από τη σχέση:

  • Αν τη χρονική στιγμή to=0 το σώμα βρίσκεται στη θέση ισορροπίας και κινείται προς τη θετική κατεύθυνση, τότε η αρχική φάση της ταλάντωσης είναι μηδέν (φο=0) και η εξίσωση της απομάκρυνσης του σώματος από τη θέση ισορροπίας δίνεται από τη σχέση: x=Aημωt
  • Αν όμως τη χρονική στιγμή to=0  που αφήνεται το σώμα να εκτελέσει ταλάντωση βρίσκεται σε ακραία θέση τότε η αρχική φάση είναι φο=π/2 ή φο=3π/2. Με εξίσωση απομάκρυνσης: x=Aημ(ωt+φο)







Σχόλια

Δημοφιλείς αναρτήσεις από αυτό το ιστολόγιο

Απλή Αρμονική Ταλάντωση (Α.Α.Τ) Εξισώσεις κίνησης

Περιοδικά ονομάζονται τα φαινόμενα που επαναλαμβάνονται με τον ίδιο τρόπο σε ίσα χρονικά διαστήματα. Π.χ. ομαλή κυκλική κίνηση, κίνηση εκκρεμούς, περιστροφή γης γύρω από τον ήλιο κ.ά.
(Σκέψου μερικά ακόμη…)
Στοιχεία περιοδικής κίνησης Κάθε περιοδική κίνηση χαρακτηρίζεται από τα παρακάτω τρία στοιχειά:
Περίοδος (Τ) ενός περιοδικού φαινομένου ονομάζεται ο χρόνος που απαιτείται για μια πλήρη επανάληψη του φαινομένου ή ο χρόνος που μεσολαβεί μεταξύ δύο διαδοχικών επαναλήψεων του φαινομένου.
Η περίοδος είναι μονόμετρο μέγεθος και η μονάδα μέτρησής της είναι το 1 sec.

Συχνότητα (f) ενός περιοδικού φαινομένου ονομάζεται το φυσικό μέγεθος του οποίου το μέτρο θα δίνεται από το σταθερό πηλίκο του αριθμού Ν των επαναλήψεων του φαινομένου σε κάποιο χρόνο t, προς το χρόνο αυτό.Δηλαδή: Η συχνότητα είναι μονόμετρο μέγεθος και έχει μονάδα μέτρησης το 1 sec-1 ή 1 κύκλος/sec ή 1 Hz (Hertz).



Σχέση μεταξύ περιόδου – συχνότητας Επειδή σε χρόνο t ίσο με μια περίοδο Τ έχουμε μια επανάληψη (Ν=1) του φαινομένου έχουμ…

Ενέργεια Ταλάντωσης

Η ενέργεια της ταλάντωσης Ε (ή ολική ενέργεια) ενός συστήματος που εκτελεί απλή αρμονική ταλάντωση ισούται με την ενέργεια που προσφέραμε αρχικά στο σύστημα για να το θέσουμε σε κίνηση (ταλάντωση). 




Η ενέργεια αυτή θα δίνεται από τη σχέση:  Από την σχέση αυτή προκύπτει ότι το πλάτος Α καθορίζεται από την ενέργεια της ταλάντωσης, δηλαδή από την ενέργεια που προσφέραμε αρχικά στο σύστημα ώστε να αρχίσει να ταλαντώνεται. Σε όλη την διάρκεια της ταλάντωσης η ενέργεια παραμένει σταθερή. Η ενέργεια μιας απλής αρμονικής ταλάντωσης είναι σταθερή και ανάλογη µε το τετράγωνο του πλάτους της.

Απόδειξη της παραπάνω σχέσης. Αν το σώμα βρίσκεται ακίνητο στην θέση ισορροπίας, για να μετακινηθεί σε µια άλλη θέση πρέπει να του ασκηθεί κατάλληλη εξωτερική δύναμη Fεξ . Κατά την μετακίνηση αυτή θα ασκείται στο σώμα και η δύναμη επαναφοράς. 

Για να μετακινηθεί το σώμα στην θέση (x) θα πρέπει το μέτρο της εξωτερικής δύναμης να είναι ίσο µε το μέτρο της δύναμης επαναφοράς και να έχει αντίθετη φορά, σε κάθε χρονι…

Ταλάντωση και Ελατήριο

Ελατήριο ονομάζεται ένα μηχανικό εξάρτημα το οποίο έχει την ικανότητα να αποθηκεύει μηχανική ενέργεια παραμορφώμενο προσωρινά. Συνήθως το σχήμα είναι ελικοειδές, αλλά υπάρχουν και ελατήρια σε σχήμα ράβδου, οι σούστες.
Το κάθε ελατήριο μπορεί να παραμορφωθεί ως προς μία διάστασή του υπό την επίδραση δύναμης. Όταν ασκείται δύναμη σε αυτήν τη διάσταση, το ελατήριο παραμορφώνεται αποθηκεύοντας το έργο της δύναμης.
Ιδανικό ελατήριο Σε ιδανικά θεωρητικά ελατήρια ισχύει απόλυτα ο νόμος του Hook, δε χάνεται ενέργεια στο περιβάλλον και τα ελατήρια μπορούν πάντα να επιστρέψουν στο αρχικό τους μήκος. Επίσης η μάζα του ιδανικού ελατηρίου θεωρείται αμελητέα. [Στην πραγματικότητα χάνεται μικρό ποσό ενέργειας στο περιβάλλον ως θερμική ενέργεια, ενώ η παραμόρφωση μπορεί να γίνει μόνιμη. Κάθε ελατήριο έχει κάποια όρια αντοχής αν τα υπερβούν θα παραμορφωθεί ή θα σπάσει. Επιπλέον, με την επαναλαμβανόμενη χρήση το υλικό χάνει τις ιδιότητές του λόγω μηχανικής κόπωσης και αν δεν αντικατασταθεί θα σπάσει.]

Νόμο…

Απλή Αρμονική Ταλάντωση (Α.Α.Τ) - Συνισταμένη Δύναμη

Από την Α΄ Λυκείου γνωρίζεις τον θεμελιώδη νόμο της Μηχανικής (2ος νόμος του Newton), ΣF=mα. Επίσης, όπως γνωρίζεις για να υπάρχει επιτάχυνση πρέπει να υπάρχει και δύναμη που ασκείται σε κάποιο σώμα. Στην Α.Α.Τ. ισχύει α=-ω2x, ο συνδυασμός αυτών των δυο σχέσεων δίνει τη σχέση: 
ΣF=-m ω2x Από τη σχέση αυτή φαίνεται ότι όταν ένα σώμα εκτελεί απλή αρμονική ταλάντωση η συνολική δύναμη που δέχεται είναι ανάλογη με την απομάκρυνση του σώματος από την Θ.Ι. της τροχιάς του και έχει αντίθετη φορά από αυτήν. Όταν το σώμα περνά από την Θ.Ι. η συνολική δύναμη που δέχεται ισούται με μηδέν. (Για το λόγο αυτό, ονομάζεται θέση ισορροπίας της ταλάντωσης). Επίσης, στις ακραίες θέσεις της ταλάντωσης η ΣF είναι μεγίστη.


Στο βίντεο δες το διάνυσμα της δύναμης επαναφοράς (είναι πάντα προς την θέση ισορροπίας). 



Αν συμβολίσουμε το γινόμενο mω2 με D (που είναι σταθερό για κάθε ταλαντωτή), δηλαδή D = mω2
Τότε θα έχουμε τη σχέση που δίνει τη δύναμη:F = −Dx (Μάθε την απόδειξη)

Η παραπάνω σχέση είναι γνωστή και σαν συν…

Θέματα πανελληνίων εξετάσεων: Ταλαντώσεις

Τα θέματα των πανελληνίων μπορείς να τα δεις κι εδώ, αλλά σ’ αυτό το αρχείο θα βρεις όλα τα θέματα από το 2001 ως το 2012 τα οποία αναφέρονται στις ταλαντώσεις, αποκλειστικά,  μηχανικές, ηλεκτρικές. Καλή δουλειά σου εύχομαι.