Μετάβαση στο κύριο περιεχόμενο

Η διαίρεση με το μηδέν και μια απόδειξη ότι ο περιπτεράς της γειτονιάς σας είναι καρότο.

Ένα πρόβλημα στα μαθηματικά είναι οι πράξεις με το μηδέν και ιδιαίτερα η διαίρεση με παρονομαστή το μηδέν. Γύρω από αυτό το πρόβλημα (ή την απροσδιοριστία αν θέλεις) έχουν γραφτεί διάφορα, πολλά από τα οποία ήταν μπούρδες, περί αποδείξεως του θεού κι άλλα τέτοια.

Το παρακάτω κείμενο το οποίο το άντλησα από το blog Μαθη...μαγικα σου εξηγεί το εξής: πως μπορείς να αποδείξεις το οτιδήποτε κάνοντας μια λάθος μαθηματική υπόθεση.



Για δες: 

«Τι είναι το μηδέν, Μπαμπά ;»

«Ο αριθμός των φτερωτών ελεφάντων που στέκονται δίπλα σου.»

« Οι ροζ ή οι άσπροι;»

  
Το μηδέν δεν πειθαρχεί σε όλους τους κανόνες των αριθμών.O Ινδός μαθηματικός  Βραχμαγκούπτα παρότι ήταν ο πρώτος που ασχολήθηκε μαζί του ενδελεχώς, ομολογουμένως δεν κατάφερε να χειριστεί την διαίρεση. Την διαίρεσή ενός αριθμού με το μηδέν.Ο μεταγενέστερος του, επίσης Ινδός μαθηματικός Μπασκάρα γνώριζε ότι όσο μικρότερος είναι ο διαιρέτης σε μια διαίρεση τόσο  μεγαλύτερο είναι το πηλίκο που προκύπτει, κατά συνέπεια  όταν διαιρούμε το 5 με το μηδέν ουσιαστικά το χωρίζουμε σε άπειρα κομμάτια οπότε το αποτέλεσμα 5/0 είναι το άπειρο. Η απάντηση του όμως είναι λανθασμένη .Πως θα μπορούσαμε να συγκεντρώσουμε  μια άπειρη ποσότητα από τίποτα και να πάρουμε το 5;Τι συμβαίνει, πολύ απλά η διαίρεση δεν εκτελείται , δεν υπάρχει αποτέλεσμα. Δεν υπάρχει αριθμός που να πολλαπλασιάσουμε με το 0 και το αποτέλεσμα να  είναι 5. Αυτή καθαυτή η αδυναμία της διαίρεσης με το μηδέν  οδηγεί σε πολλά παράδοξα. Ο Charles Seife στο βιβλίο του Μηδέν. Η βιογραφία μιας επικίνδυνης έννοιας γράφει χαρακτηριστικά:

«Η διαίρεση με το μηδέν ... σας δίνει τη δυνατότητα να αποδείξετε, μαθηματικά οτιδήποτε  στο σύμπαν. Μπορείτε να αποδείξετε ότι 1 +1 = 42, και από εκεί μπορείτε να αποδείξετε ότι ο J. Edgar Hoover είναι ένας εξωγήινος, ότι ο William Shakespeare ήρθε από το Ουζμπεκιστάν, ή ακόμα και ότι ο ουρανός είναι πουά.»                                                                         


Υποθέτουμε ότι α=1 και β=1, για τις τιμές αυτές ισχύει η ισότητα: β2=αβ  (1)
Εφόσον το α ισούται με τον εαυτό του:  α22 (2)

Αφαιρούμε κατά μέλη τις (1) ,(2) και παραγοντοποιούμε τα δυο μέλη:
(2)-(1): α222 –αβ ή (α –β)(α+β)= α(α–β)  (3)

Διαιρούμε κατά δυο μέλη με τον παράγοντα α-β και προκύπτει:


Αρχικά όμως υποθέσαμε ότι β=1 οπότε προκύπτει 0=1  (4)

Γνωρίζουμε ότι ο περιπτεράς είχε ένα κεφάλι αλλά από την ισότητα (4)  ένα ίσον κανένα οπότε δεν έχει κεφάλι .Ο περιπτεράς δεν έχει κανένα μίσχο με φύλλα αλλά από την ισότητα (4) έχει ένα μίσχο με φύλλα.

Πολλαπλασιάζουμε  και τα δυο μέλη της ισότητας (4) με το 2 και έχουμε 0=2 (5)
Ο περιπτεράς έχει δυο χέρια αλλά 2=0 όποτε ο περιπτεράς  δεν έχει χέρια .Ομοίως αποδεικνύουμε ο περιπτεράς δεν έχει  δυο πόδια.

Τώρα ποιο είναι το χρώμα του περιπτερά. Γνωρίζουμε ότι το λευκό φως πέφτει στα αντικείμενα και αυτά απορροφούν κάποια μήκη κύματος και ανακλούν άλλα ,αυτά που ανακλούν δίνουν τον χρωματισμό του αντικείμενου. Έτσι το φως πέφτει πάνω στον περιπτερά και αυτός επανεκπέμπει φωτόνια. Ας πάρουμε οποιοδήποτε από αυτά τα φωτόνια. Πολλαπλασιάζουμε την ισότητα 0=1 με το μήκος κύματος των φωτονίων που εκπέμπει ο περιπτεράς, και προκύπτει:
(Μήκος κύματος φωτονίου περιπτερά)=0  (6) .

Πολλαπλασιάζουμε την ισότητα (6) με το 640 και προκύπτει.    640=0 (7)

Από την (7) και την (6) προκύπτει:

(Μήκος κύματος φωτονίου περιπτερά)=640 nm

Από την τελευταία ισότητα αντιλαμβανόμαστε ότι το  κάθε φωτόνιο που εκπέμπει ο περιπτεράς έχει μήκος κύματος 640 nm άρα το χρώμα του είναι πορτοκαλί. Ανακεφαλαιώνουμε:

Ο περιπτεράς δεν έχει κεφάλι, χέρια, πόδια έχει μίσχο με φύλλα και είναι χρώματος πορτοκαλί άρα πρόκειται για καρότο.

Όλα αυτά γιατί διαιρέσαμε με τον όρο α-β που ισούται με μηδέν.





Σχόλια

Δημοφιλείς αναρτήσεις από αυτό το ιστολόγιο

Απλή Αρμονική Ταλάντωση (Α.Α.Τ) Εξισώσεις κίνησης

Περιοδικά ονομάζονται τα φαινόμενα που επαναλαμβάνονται με τον ίδιο τρόπο σε ίσα χρονικά διαστήματα. Π.χ. ομαλή κυκλική κίνηση, κίνηση εκκρεμούς, περιστροφή γης γύρω από τον ήλιο κ.ά.
(Σκέψου μερικά ακόμη…)
Στοιχεία περιοδικής κίνησης Κάθε περιοδική κίνηση χαρακτηρίζεται από τα παρακάτω τρία στοιχειά:
Περίοδος (Τ) ενός περιοδικού φαινομένου ονομάζεται ο χρόνος που απαιτείται για μια πλήρη επανάληψη του φαινομένου ή ο χρόνος που μεσολαβεί μεταξύ δύο διαδοχικών επαναλήψεων του φαινομένου.
Η περίοδος είναι μονόμετρο μέγεθος και η μονάδα μέτρησής της είναι το 1 sec.

Συχνότητα (f) ενός περιοδικού φαινομένου ονομάζεται το φυσικό μέγεθος του οποίου το μέτρο θα δίνεται από το σταθερό πηλίκο του αριθμού Ν των επαναλήψεων του φαινομένου σε κάποιο χρόνο t, προς το χρόνο αυτό.Δηλαδή: Η συχνότητα είναι μονόμετρο μέγεθος και έχει μονάδα μέτρησης το 1 sec-1 ή 1 κύκλος/sec ή 1 Hz (Hertz).



Σχέση μεταξύ περιόδου – συχνότητας Επειδή σε χρόνο t ίσο με μια περίοδο Τ έχουμε μια επανάληψη (Ν=1) του φαινομένου έχουμ…

Ενέργεια Ταλάντωσης

Η ενέργεια της ταλάντωσης Ε (ή ολική ενέργεια) ενός συστήματος που εκτελεί απλή αρμονική ταλάντωση ισούται με την ενέργεια που προσφέραμε αρχικά στο σύστημα για να το θέσουμε σε κίνηση (ταλάντωση). 




Η ενέργεια αυτή θα δίνεται από τη σχέση:  Από την σχέση αυτή προκύπτει ότι το πλάτος Α καθορίζεται από την ενέργεια της ταλάντωσης, δηλαδή από την ενέργεια που προσφέραμε αρχικά στο σύστημα ώστε να αρχίσει να ταλαντώνεται. Σε όλη την διάρκεια της ταλάντωσης η ενέργεια παραμένει σταθερή. Η ενέργεια μιας απλής αρμονικής ταλάντωσης είναι σταθερή και ανάλογη µε το τετράγωνο του πλάτους της.

Απόδειξη της παραπάνω σχέσης. Αν το σώμα βρίσκεται ακίνητο στην θέση ισορροπίας, για να μετακινηθεί σε µια άλλη θέση πρέπει να του ασκηθεί κατάλληλη εξωτερική δύναμη Fεξ . Κατά την μετακίνηση αυτή θα ασκείται στο σώμα και η δύναμη επαναφοράς. 

Για να μετακινηθεί το σώμα στην θέση (x) θα πρέπει το μέτρο της εξωτερικής δύναμης να είναι ίσο µε το μέτρο της δύναμης επαναφοράς και να έχει αντίθετη φορά, σε κάθε χρονι…

Ταλάντωση και Ελατήριο

Ελατήριο ονομάζεται ένα μηχανικό εξάρτημα το οποίο έχει την ικανότητα να αποθηκεύει μηχανική ενέργεια παραμορφώμενο προσωρινά. Συνήθως το σχήμα είναι ελικοειδές, αλλά υπάρχουν και ελατήρια σε σχήμα ράβδου, οι σούστες.
Το κάθε ελατήριο μπορεί να παραμορφωθεί ως προς μία διάστασή του υπό την επίδραση δύναμης. Όταν ασκείται δύναμη σε αυτήν τη διάσταση, το ελατήριο παραμορφώνεται αποθηκεύοντας το έργο της δύναμης.
Ιδανικό ελατήριο Σε ιδανικά θεωρητικά ελατήρια ισχύει απόλυτα ο νόμος του Hook, δε χάνεται ενέργεια στο περιβάλλον και τα ελατήρια μπορούν πάντα να επιστρέψουν στο αρχικό τους μήκος. Επίσης η μάζα του ιδανικού ελατηρίου θεωρείται αμελητέα. [Στην πραγματικότητα χάνεται μικρό ποσό ενέργειας στο περιβάλλον ως θερμική ενέργεια, ενώ η παραμόρφωση μπορεί να γίνει μόνιμη. Κάθε ελατήριο έχει κάποια όρια αντοχής αν τα υπερβούν θα παραμορφωθεί ή θα σπάσει. Επιπλέον, με την επαναλαμβανόμενη χρήση το υλικό χάνει τις ιδιότητές του λόγω μηχανικής κόπωσης και αν δεν αντικατασταθεί θα σπάσει.]

Νόμο…

Απλή Αρμονική Ταλάντωση (Α.Α.Τ) - Συνισταμένη Δύναμη

Από την Α΄ Λυκείου γνωρίζεις τον θεμελιώδη νόμο της Μηχανικής (2ος νόμος του Newton), ΣF=mα. Επίσης, όπως γνωρίζεις για να υπάρχει επιτάχυνση πρέπει να υπάρχει και δύναμη που ασκείται σε κάποιο σώμα. Στην Α.Α.Τ. ισχύει α=-ω2x, ο συνδυασμός αυτών των δυο σχέσεων δίνει τη σχέση: 
ΣF=-m ω2x Από τη σχέση αυτή φαίνεται ότι όταν ένα σώμα εκτελεί απλή αρμονική ταλάντωση η συνολική δύναμη που δέχεται είναι ανάλογη με την απομάκρυνση του σώματος από την Θ.Ι. της τροχιάς του και έχει αντίθετη φορά από αυτήν. Όταν το σώμα περνά από την Θ.Ι. η συνολική δύναμη που δέχεται ισούται με μηδέν. (Για το λόγο αυτό, ονομάζεται θέση ισορροπίας της ταλάντωσης). Επίσης, στις ακραίες θέσεις της ταλάντωσης η ΣF είναι μεγίστη.


Στο βίντεο δες το διάνυσμα της δύναμης επαναφοράς (είναι πάντα προς την θέση ισορροπίας). 



Αν συμβολίσουμε το γινόμενο mω2 με D (που είναι σταθερό για κάθε ταλαντωτή), δηλαδή D = mω2
Τότε θα έχουμε τη σχέση που δίνει τη δύναμη:F = −Dx (Μάθε την απόδειξη)

Η παραπάνω σχέση είναι γνωστή και σαν συν…

Ταλάντωση και πλαστική κρούση

Θυμήσου την ορμή: 
Για ένα σώμα μάζας m που κινείται µε ταχύτητα u η ορμή του p δίνεται από τη σχέση: p=mu

Η ορμή p είναι ένα διανυσματικό μέγεθος το ο­ποίο έχει: μέτρο p = mu,διεύθυνση και φορά ίδια µε τη διεύθυνση και τη φορά της ταχύτητας u,μονάδα μέτρησης στο S.I. το 1 kg ∙ m/s (ισοδύναμη μονάδα είναι το 1 Ν∙s).Η ορμή, ως διανυσματικό μέγεθος, έχει όλες τις ιδιότητες των διανυσμάτων. Έτσι: μπορεί ν' αναλυθεί σε άξονες, δηλαδή σε συ­νιστώσες px και py,μεταβάλλεται αν μεταβληθεί τουλάχιστον ένα από τα στοιχεία της, δηλαδή το μέτρο της, η διεύθυνσή της ή η φορά της.Ο ρυθμός μεταβολής της ορμής (dp/dt) ισούται με την δύναμη ή τη συνισταμένη των δυνάμεων (ΣF) που ασκούνται στο σώμα.

Προσοχή:

Όταν στις ασκήσεις πρέπει να υπολογίσεις την μεταβολή της ορμής τότε θα υπολογίζεις την σχέση:Δp = pτελ – pαρχΕνώ όταν  ζητείται ο ρυθμό μεταβολής της ορμής θα υπολογίζεις τη σχέση: dp/dt ή ΣF. Θυμήσου:
Σύστημα σωμάτων ονομάζουμε κάθε σύνολο σωμάτων, τα οποία απομονώνουμε νοητι…