Μετάβαση στο κύριο περιεχόμενο

Ένα light άρθρο λόγω... άνωσης.

Μπορεί η στατική ρευστών να μην είναι το πρώτο πράγμα που σκέφτεται κανείς κολυμπώντας, όμως η λέξη άνωση δεν είναι εντελώς άγνωστη. Άλλωστε και η ανακάλυψη του Αρχιμήδη, όσον αφορά την αρχή της άνωσης, έγινε απροσδόκητα κάνοντας τον να αναφωνήσει το γνωστό "εύρηκα" (δες εδώ την ιστορία σε comic).

Η άνωση προκύπτει από το γεγονός ότι η πίεση ενός υγρού αυξάνεται με το βάθος και από το γεγονός ότι η αυξημένη πίεση ασκείται σε όλες τις κατευθύνσεις (αρχή του Pascal). Αποτέλεσμα των παραπάνω είναι η ύπαρξη προς τα άνω μιας μη ισορροπημένης δύναμης στο κάτω μέρος ενός βυθιζόμενου αντικειμένου. Δεδομένου ότι η "μπάλα νερού" στα αριστερά υποστηρίζεται από την ίδια διαφορά πίεσης που υφίσταται το στερεό αντικείμενο στα δεξιά, προκύπτει ότι η δύναμη της άνωσης στο στερεό αντικείμενο είναι ίση με το βάρος του νερού που εκτοπίζεται (αρχή του Αρχιμήδη).
Η άνωση ουσιαστικά προκαλείται από τη διαφορά μεταξύ της πιέσης στην κορυφή του αντικειμένου, η οποία το σπρώχνει προς τα κάτω, και της πίεσης στο κάτω μέρος, η οποία το ωθεί προς τα άνω. Η σχέση του βάρους του αντικειμένου προς το βάρος του νερού που εκτοπίζεται καθορίζει εάν το αντικείμενο θα επιπλέει ή όχι. Η ποσότητα νερού που εκτοπίζεται προσδιορίζεται από την πυκνότητα του αντικειμένου (Η πυκνότητα εκφράζει τη μάζα του υλικου που περιέχεται σε μία μονάδα όγκου). 

Υπολογίζοντας τον όγκο αλλιώς:
Όπως αναφέρθηκε η δύναμη της άνωσης σε ένα καταδυόμενο αντικείμενο είναι ίση με το βάρος του υγρού που εκτοπίζεται από το αντικείμενο.Επιπλέον το νερό έχει πυκνότητα ενός γραμμαρίου ανά κυβικό εκατοστόμετρο. Με βάση τα παραπάνω δεδομένα παρέχεται ένας βολικός τρόπος για τον προσδιορισμό του όγκου ενός αντικειμένου, ακανόνιστου σχήματος, και συνεπώς της πυκνότητάς του.

Επιπρόσθετα μπορείς να δεις εδώ πως χρησιμοποιούνται οι αρχές της άνωσης στις αεροστατικές μηχανές από τη NASA.

Τέλος, μέσω μιας προσομοίωσης του PhET, η οποία είναι αρκετά απλή αλλά κατατοπιστική, έχεις τη δυνατότητα να πειραματιστείς στον τομέα της άνωσης. 





Σχόλια

Δημοφιλείς αναρτήσεις από αυτό το ιστολόγιο

Απλή Αρμονική Ταλάντωση (Α.Α.Τ) Εξισώσεις κίνησης

Περιοδικά ονομάζονται τα φαινόμενα που επαναλαμβάνονται με τον ίδιο τρόπο σε ίσα χρονικά διαστήματα. Π.χ. ομαλή κυκλική κίνηση, κίνηση εκκρεμούς, περιστροφή γης γύρω από τον ήλιο κ.ά.
(Σκέψου μερικά ακόμη…)
Στοιχεία περιοδικής κίνησης Κάθε περιοδική κίνηση χαρακτηρίζεται από τα παρακάτω τρία στοιχειά:
Περίοδος (Τ) ενός περιοδικού φαινομένου ονομάζεται ο χρόνος που απαιτείται για μια πλήρη επανάληψη του φαινομένου ή ο χρόνος που μεσολαβεί μεταξύ δύο διαδοχικών επαναλήψεων του φαινομένου.
Η περίοδος είναι μονόμετρο μέγεθος και η μονάδα μέτρησής της είναι το 1 sec.

Συχνότητα (f) ενός περιοδικού φαινομένου ονομάζεται το φυσικό μέγεθος του οποίου το μέτρο θα δίνεται από το σταθερό πηλίκο του αριθμού Ν των επαναλήψεων του φαινομένου σε κάποιο χρόνο t, προς το χρόνο αυτό.Δηλαδή: Η συχνότητα είναι μονόμετρο μέγεθος και έχει μονάδα μέτρησης το 1 sec-1 ή 1 κύκλος/sec ή 1 Hz (Hertz).



Σχέση μεταξύ περιόδου – συχνότητας Επειδή σε χρόνο t ίσο με μια περίοδο Τ έχουμε μια επανάληψη (Ν=1) του φαινομένου έχουμ…

Ενέργεια Ταλάντωσης

Η ενέργεια της ταλάντωσης Ε (ή ολική ενέργεια) ενός συστήματος που εκτελεί απλή αρμονική ταλάντωση ισούται με την ενέργεια που προσφέραμε αρχικά στο σύστημα για να το θέσουμε σε κίνηση (ταλάντωση). 




Η ενέργεια αυτή θα δίνεται από τη σχέση:  Από την σχέση αυτή προκύπτει ότι το πλάτος Α καθορίζεται από την ενέργεια της ταλάντωσης, δηλαδή από την ενέργεια που προσφέραμε αρχικά στο σύστημα ώστε να αρχίσει να ταλαντώνεται. Σε όλη την διάρκεια της ταλάντωσης η ενέργεια παραμένει σταθερή. Η ενέργεια μιας απλής αρμονικής ταλάντωσης είναι σταθερή και ανάλογη µε το τετράγωνο του πλάτους της.

Απόδειξη της παραπάνω σχέσης. Αν το σώμα βρίσκεται ακίνητο στην θέση ισορροπίας, για να μετακινηθεί σε µια άλλη θέση πρέπει να του ασκηθεί κατάλληλη εξωτερική δύναμη Fεξ . Κατά την μετακίνηση αυτή θα ασκείται στο σώμα και η δύναμη επαναφοράς. 

Για να μετακινηθεί το σώμα στην θέση (x) θα πρέπει το μέτρο της εξωτερικής δύναμης να είναι ίσο µε το μέτρο της δύναμης επαναφοράς και να έχει αντίθετη φορά, σε κάθε χρονι…

Ταλάντωση και Ελατήριο

Ελατήριο ονομάζεται ένα μηχανικό εξάρτημα το οποίο έχει την ικανότητα να αποθηκεύει μηχανική ενέργεια παραμορφώμενο προσωρινά. Συνήθως το σχήμα είναι ελικοειδές, αλλά υπάρχουν και ελατήρια σε σχήμα ράβδου, οι σούστες.
Το κάθε ελατήριο μπορεί να παραμορφωθεί ως προς μία διάστασή του υπό την επίδραση δύναμης. Όταν ασκείται δύναμη σε αυτήν τη διάσταση, το ελατήριο παραμορφώνεται αποθηκεύοντας το έργο της δύναμης.
Ιδανικό ελατήριο Σε ιδανικά θεωρητικά ελατήρια ισχύει απόλυτα ο νόμος του Hook, δε χάνεται ενέργεια στο περιβάλλον και τα ελατήρια μπορούν πάντα να επιστρέψουν στο αρχικό τους μήκος. Επίσης η μάζα του ιδανικού ελατηρίου θεωρείται αμελητέα. [Στην πραγματικότητα χάνεται μικρό ποσό ενέργειας στο περιβάλλον ως θερμική ενέργεια, ενώ η παραμόρφωση μπορεί να γίνει μόνιμη. Κάθε ελατήριο έχει κάποια όρια αντοχής αν τα υπερβούν θα παραμορφωθεί ή θα σπάσει. Επιπλέον, με την επαναλαμβανόμενη χρήση το υλικό χάνει τις ιδιότητές του λόγω μηχανικής κόπωσης και αν δεν αντικατασταθεί θα σπάσει.]

Νόμο…

Απλή Αρμονική Ταλάντωση (Α.Α.Τ) - Συνισταμένη Δύναμη

Από την Α΄ Λυκείου γνωρίζεις τον θεμελιώδη νόμο της Μηχανικής (2ος νόμος του Newton), ΣF=mα. Επίσης, όπως γνωρίζεις για να υπάρχει επιτάχυνση πρέπει να υπάρχει και δύναμη που ασκείται σε κάποιο σώμα. Στην Α.Α.Τ. ισχύει α=-ω2x, ο συνδυασμός αυτών των δυο σχέσεων δίνει τη σχέση: 
ΣF=-m ω2x Από τη σχέση αυτή φαίνεται ότι όταν ένα σώμα εκτελεί απλή αρμονική ταλάντωση η συνολική δύναμη που δέχεται είναι ανάλογη με την απομάκρυνση του σώματος από την Θ.Ι. της τροχιάς του και έχει αντίθετη φορά από αυτήν. Όταν το σώμα περνά από την Θ.Ι. η συνολική δύναμη που δέχεται ισούται με μηδέν. (Για το λόγο αυτό, ονομάζεται θέση ισορροπίας της ταλάντωσης). Επίσης, στις ακραίες θέσεις της ταλάντωσης η ΣF είναι μεγίστη.


Στο βίντεο δες το διάνυσμα της δύναμης επαναφοράς (είναι πάντα προς την θέση ισορροπίας). 



Αν συμβολίσουμε το γινόμενο mω2 με D (που είναι σταθερό για κάθε ταλαντωτή), δηλαδή D = mω2
Τότε θα έχουμε τη σχέση που δίνει τη δύναμη:F = −Dx (Μάθε την απόδειξη)

Η παραπάνω σχέση είναι γνωστή και σαν συν…

Ταλάντωση και πλαστική κρούση

Θυμήσου την ορμή: 
Για ένα σώμα μάζας m που κινείται µε ταχύτητα u η ορμή του p δίνεται από τη σχέση: p=mu

Η ορμή p είναι ένα διανυσματικό μέγεθος το ο­ποίο έχει: μέτρο p = mu,διεύθυνση και φορά ίδια µε τη διεύθυνση και τη φορά της ταχύτητας u,μονάδα μέτρησης στο S.I. το 1 kg ∙ m/s (ισοδύναμη μονάδα είναι το 1 Ν∙s).Η ορμή, ως διανυσματικό μέγεθος, έχει όλες τις ιδιότητες των διανυσμάτων. Έτσι: μπορεί ν' αναλυθεί σε άξονες, δηλαδή σε συ­νιστώσες px και py,μεταβάλλεται αν μεταβληθεί τουλάχιστον ένα από τα στοιχεία της, δηλαδή το μέτρο της, η διεύθυνσή της ή η φορά της.Ο ρυθμός μεταβολής της ορμής (dp/dt) ισούται με την δύναμη ή τη συνισταμένη των δυνάμεων (ΣF) που ασκούνται στο σώμα.

Προσοχή:

Όταν στις ασκήσεις πρέπει να υπολογίσεις την μεταβολή της ορμής τότε θα υπολογίζεις την σχέση:Δp = pτελ – pαρχΕνώ όταν  ζητείται ο ρυθμό μεταβολής της ορμής θα υπολογίζεις τη σχέση: dp/dt ή ΣF. Θυμήσου:
Σύστημα σωμάτων ονομάζουμε κάθε σύνολο σωμάτων, τα οποία απομονώνουμε νοητι…