Μετάβαση στο κύριο περιεχόμενο

Τα γενέθλια του Νεύτωνα.

Η ιστορία μας αρχίζει στις 25 Δεκεμβρίου 1642 όταν ένα μικρό μήλο έπεσε από μια μηλιά. Και έπεσε κυριολεκτικά μέσα στην καρδιά του Σύμπαντος, γιατί, σήμερα, κάθε άστρο και κάθε γαλαξίας που βλέπουμε να λάμπει πάνω στον ουρανό της νύχτας αντανακλά τη σπουδαιότητα αυτού του φαινομενικά απλού περιστατικού. Ενός περιστατικού αντιπροσωπευτικού μιας δύναμης που όχι μόνο κάνει τα μήλα να πέφτουν, αλλά και η οποία θεωρείται από την επιστήμη ότι είναι υπεύθυνη για την ύπαρξη ολόκληρου του Σύμπαντος. Αναφερόμαστε φυσικά στη δύναμη που ονομάζουμε βαρύτητα.
Τα Χριστούγεννα λοιπόν του 1642 ο κόσμος, ιδιαίτερα ο επιστημονικός, πήρε ένα ασυνήθιστο λίγο-πολύ χριστουγεννιάτικο δώρο με την γέννηση στην Αγγλία του Ισαάκ Νεύτωνα (1642-1727). Γιατί ο Νεύτων επρόκειτο να γίνει μια από τις μεγαλύτερες μορφές στην ιστορία της επιστήμης. Το μεγαλείο του Νεύτωνα οφείλεται κατά ένα μέρος στο ότι ήταν αυτός που διατύπωσε πρώτος μιαν απλή ερώτηση: "Όταν σπάσει ένα κλαδί και πέσει ένα μήλο, γιατί το μήλο δεν πετάει προς τα πάνω ή δεν γλιστράει προς τα πλάγια ή δεν μένει απλώς εκεί που βρίσκεται;" Αλλά το πραγματικό του μεγαλείο βασίζεται στο γεγονός ότι μας έδωσε και την απάντηση στο ερώτημα αυτό. Και η απάντησή του ήταν: η βαρύτητα.
Η βαρύτητα, είπε ο Νεύτων, είναι η δύναμη έλξεως που έχουν όλα τα αντικείμενα το ένα προς το άλλο. Και η βαρύτητα ήταν αυτό που κάνει τα μήλα να πέφτουν. Ο Νεύτων δεν ήταν ο πρώτος επιστήμονας που μελέτησε την έλξη που ασκεί η Γή στα διάφορα αντικείμενα, ούτε φυσικά ήταν κι ο τελευταίος που απόρησε για τα μυστήρια που κρύβει η βαρύτητα. Ήταν όμως ο πρώτος που αναγνώρισε ότι η βαρύτητα διαχέεται σ' ολόκληρο το Σύμπαν, κι ήταν ο πρώτος που έδειξε ότι η ισχυρή αλληλεπίδραση της βαρύτητας είναι αυτή που κρατάει στη θέση τους τα άστρα, τους πλανήτες και τα άλλα ουράνια σώματα.
Κατά τη διάρκεια της μεγάλης επιδημίας της πανώλης, το 1666, τα σχολεία της Αγγλίας αναγκάστηκαν να κλείσουν. Αυτή η ευκαιρία έδωσε στον Νεύτωνα τον καιρό να σκεφτεί, και οι σκέψεις που έκανε έβαλαν τις βάσεις της επιστήμης για τα επόμενα 250 χρόνια. Ο Νεύτων καταπιάστηκε επίσης και με την οπτική και ανακάλυψε ότι με τη βοήθεια ενός πρίσματος, το λευκό φως μπορούσε να διαχωριστεί στα συστατικά του χρώματα που ονόμασε «φάσμα». Τελειοποίησε, επιπλέον, το πρώτο ανακλαστικό τηλεσκόπιο, εξήγησε την αιτία των παλιρροιών, καθώς επίσης και την πλάτυνση του ισημερινού της Γης. Για να εξηγήσει τις κινήσεις των πλανητών, χρειάστηκε ένα νέο είδος μαθηματικών, κι έτσι εφηύρε τον μαθηματικό λογισμό. Αλλά το πιο σπουδαίο απ' όλα, αυτό που έκανε τον Νεύτωνα ιδιαίτερα γνωστό, ήταν η ανάλυση που έκανε για τη δύναμη της βαρύτητας.
Στις αρχές του 17ου αιώνα, ο Τύχων Μπράχε (1546-1601) και ο Γιοχάνες Κέπλερ (1571-1630), πρόσφεραν τα στοιχεία που χρειαζόταν ο Νεύτων για να μπορέσει να αποκρυπτογραφήσει τα μυστήρια της βαρύτητας. Με βάση τις εργασίες αυτές και με τη βοήθεια των ιδεών του Γαλιλαίου, ο Νεύτων μπόρεσε να πετύχει τον σπουδαιότερο θρίαμβό του, να διατυπώσει δηλαδή τα τρία αξιώματα της κίνησης και το νόμο της Παγκοσμίου Έλξεως. Ο Νεύτων υποστήριζε δηλαδή ότι η Σελήνη περιφέρεται γύρω από τον πλανήτη μας λόγω της ελκτικής δύναμης που ασκεί η Γη πάνω στο δορυφόρο της. Οπότε θα ήταν λογικό να υποθέσουμε ότι και η ίδια η Γη βρίσκεται σε τροχιά γύρω από τον Ήλιο λόγω της ελκτικής δύναμης που ασκεί πάνω της ο Ήλιος. Το ίδιο άλλωστε πρέπει να ευσταθεί και για τους υπόλοιπους πλανήτες και τους δορυφόρους τους.
Ο Νεύτων μας είπε πολλά για τη βαρύτητα, αλλά γνώριζε ότι δεν μπόρεσε να λύσει όλα τα μυστήρια που έκρυβε. Συχνά παραδεχόταν ότι η δική του συνεισφορά στην επιστήμη υπήρξε μια μόνο σταγόνα στον απέραντο ωκεανό της επιστημονικής εξερεύνησης: «Δεν ξέρω τι μπορεί να φαίνομαι στον κόσμο", έγραφε "αλλά στον εαυτό μου μοιάζω με ένα παιδάκι που παίζει στην αμμουδιά και διασκεδάζει βρίσκοντας πότε κάποιο λείο βότσαλο και πότε κάποιο πιο όμορφο όστρακο από τα συνηθισμένα, ενώ ο μεγάλος ωκεανός της γνώσης απλώνεται μπροστά μου τελείως ανεξερεύνητος».
Ο μεγάλος αυτός ωκεανός της γνώσης που απλωνόταν μπροστά στον Νεύτωνα συνέχισε να εξάπτει τη φαντασία και την επιδεξιότητα των επιστημόνων παρ' όλη την πάροδο των αιώνων. Και σήμερα μερικά από τα πιο βασικά μυστήρια της βαρύτητας συνεχίζουν να αποτελούν το αντικείμενο εντατικής μελέτης και εξερεύνησης. Τι προκαλεί άραγε τη βαρύτητα; Γιατί τα αντικείμενα έλκονται μεταξύ τους; Η έλξη της βαρύτητας ανάμεσα σε δύο αντικείμενα παραμένει σταθερή ή εξασθενεί με την πάροδο του χρόνου; Μήπως η βαρύτητα δημιουργείται με τη μορφή βαρυτικών κυμάτων όπως ακριβώς το φως και άλλα είδη ενέργειας; Και αν πράγματι υπάρχουν αυτά τα βαρυτικά κύματα, από που προέρχονται;
Ο Άλμπερτ Αϊνστάιν, ο μεγαλύτερος ίσως επιστημονικός νους της σύγχρονης εποχής, δαπάνησε το μεγαλύτερο μέρος της ζωής του αντιμετωπίζοντας αυτά και άλλα παρόμοια ερωτήματα. Ο μεγαλοφυής αυτός επιστήμονας έλεγε κάποτε με μετριοφροσύνη ότι σ' ολόκληρη τη ζωή του είχε δύο μόνο πραγματικές ιδέες. Το 1905 και αργότερα το 1915 δημοσίευσε τις ιδέες του αυτές, ιδέες που επρόκειτο να αναστατώσουν κυριολεκτικά τον επιστημονικό κόσμο. Οι ιδέες του αυτές είναι σήμερα γνωστές με την επωνυμία Ειδική και Γενική Θεωρία της Σχετικότητας.
Ήταν ένα έργο με τόσο εκπληκτική πρωτοτυπία, ώστε ξεχύθηκε στον επιστημονικό κόσμο με την ίδια ορμή ενός ξέφρενου νέου χορού. Μ' αυτό του το έργο ο Αϊνστάιν έδωσε πραγματικά μία τελείως διαφορετική τροπή στην εξέλιξη των ιδεών μας για το χώρο και το χρόνο. Μέσα σ' ένα εκπληκτικά σύντομο χρονικό διάστημα, ο κάθε φυσικός επιστήμονας στον κόσμο είτε αναγκαζόταν να μάθει και να προσαρμοστεί στη νέα πραγματικότητα ή, λόγω ηλικίας, υποχρεωνόταν να μείνει τελείως έξω από την επιστημονική παρέλαση.




Σχόλια

Δημοφιλείς αναρτήσεις από αυτό το ιστολόγιο

Απλή Αρμονική Ταλάντωση (Α.Α.Τ) Εξισώσεις κίνησης

Περιοδικά ονομάζονται τα φαινόμενα που επαναλαμβάνονται με τον ίδιο τρόπο σε ίσα χρονικά διαστήματα. Π.χ. ομαλή κυκλική κίνηση, κίνηση εκκρεμούς, περιστροφή γης γύρω από τον ήλιο κ.ά.
(Σκέψου μερικά ακόμη…)
Στοιχεία περιοδικής κίνησης Κάθε περιοδική κίνηση χαρακτηρίζεται από τα παρακάτω τρία στοιχειά:
Περίοδος (Τ) ενός περιοδικού φαινομένου ονομάζεται ο χρόνος που απαιτείται για μια πλήρη επανάληψη του φαινομένου ή ο χρόνος που μεσολαβεί μεταξύ δύο διαδοχικών επαναλήψεων του φαινομένου.
Η περίοδος είναι μονόμετρο μέγεθος και η μονάδα μέτρησής της είναι το 1 sec.

Συχνότητα (f) ενός περιοδικού φαινομένου ονομάζεται το φυσικό μέγεθος του οποίου το μέτρο θα δίνεται από το σταθερό πηλίκο του αριθμού Ν των επαναλήψεων του φαινομένου σε κάποιο χρόνο t, προς το χρόνο αυτό.Δηλαδή: Η συχνότητα είναι μονόμετρο μέγεθος και έχει μονάδα μέτρησης το 1 sec-1 ή 1 κύκλος/sec ή 1 Hz (Hertz).



Σχέση μεταξύ περιόδου – συχνότητας Επειδή σε χρόνο t ίσο με μια περίοδο Τ έχουμε μια επανάληψη (Ν=1) του φαινομένου έχουμ…

Ενέργεια Ταλάντωσης

Η ενέργεια της ταλάντωσης Ε (ή ολική ενέργεια) ενός συστήματος που εκτελεί απλή αρμονική ταλάντωση ισούται με την ενέργεια που προσφέραμε αρχικά στο σύστημα για να το θέσουμε σε κίνηση (ταλάντωση). 




Η ενέργεια αυτή θα δίνεται από τη σχέση:  Από την σχέση αυτή προκύπτει ότι το πλάτος Α καθορίζεται από την ενέργεια της ταλάντωσης, δηλαδή από την ενέργεια που προσφέραμε αρχικά στο σύστημα ώστε να αρχίσει να ταλαντώνεται. Σε όλη την διάρκεια της ταλάντωσης η ενέργεια παραμένει σταθερή. Η ενέργεια μιας απλής αρμονικής ταλάντωσης είναι σταθερή και ανάλογη µε το τετράγωνο του πλάτους της.

Απόδειξη της παραπάνω σχέσης. Αν το σώμα βρίσκεται ακίνητο στην θέση ισορροπίας, για να μετακινηθεί σε µια άλλη θέση πρέπει να του ασκηθεί κατάλληλη εξωτερική δύναμη Fεξ . Κατά την μετακίνηση αυτή θα ασκείται στο σώμα και η δύναμη επαναφοράς. 

Για να μετακινηθεί το σώμα στην θέση (x) θα πρέπει το μέτρο της εξωτερικής δύναμης να είναι ίσο µε το μέτρο της δύναμης επαναφοράς και να έχει αντίθετη φορά, σε κάθε χρονι…

Ταλάντωση και Ελατήριο

Ελατήριο ονομάζεται ένα μηχανικό εξάρτημα το οποίο έχει την ικανότητα να αποθηκεύει μηχανική ενέργεια παραμορφώμενο προσωρινά. Συνήθως το σχήμα είναι ελικοειδές, αλλά υπάρχουν και ελατήρια σε σχήμα ράβδου, οι σούστες.
Το κάθε ελατήριο μπορεί να παραμορφωθεί ως προς μία διάστασή του υπό την επίδραση δύναμης. Όταν ασκείται δύναμη σε αυτήν τη διάσταση, το ελατήριο παραμορφώνεται αποθηκεύοντας το έργο της δύναμης.
Ιδανικό ελατήριο Σε ιδανικά θεωρητικά ελατήρια ισχύει απόλυτα ο νόμος του Hook, δε χάνεται ενέργεια στο περιβάλλον και τα ελατήρια μπορούν πάντα να επιστρέψουν στο αρχικό τους μήκος. Επίσης η μάζα του ιδανικού ελατηρίου θεωρείται αμελητέα. [Στην πραγματικότητα χάνεται μικρό ποσό ενέργειας στο περιβάλλον ως θερμική ενέργεια, ενώ η παραμόρφωση μπορεί να γίνει μόνιμη. Κάθε ελατήριο έχει κάποια όρια αντοχής αν τα υπερβούν θα παραμορφωθεί ή θα σπάσει. Επιπλέον, με την επαναλαμβανόμενη χρήση το υλικό χάνει τις ιδιότητές του λόγω μηχανικής κόπωσης και αν δεν αντικατασταθεί θα σπάσει.]

Νόμο…

Απλή Αρμονική Ταλάντωση (Α.Α.Τ) - Συνισταμένη Δύναμη

Από την Α΄ Λυκείου γνωρίζεις τον θεμελιώδη νόμο της Μηχανικής (2ος νόμος του Newton), ΣF=mα. Επίσης, όπως γνωρίζεις για να υπάρχει επιτάχυνση πρέπει να υπάρχει και δύναμη που ασκείται σε κάποιο σώμα. Στην Α.Α.Τ. ισχύει α=-ω2x, ο συνδυασμός αυτών των δυο σχέσεων δίνει τη σχέση: 
ΣF=-m ω2x Από τη σχέση αυτή φαίνεται ότι όταν ένα σώμα εκτελεί απλή αρμονική ταλάντωση η συνολική δύναμη που δέχεται είναι ανάλογη με την απομάκρυνση του σώματος από την Θ.Ι. της τροχιάς του και έχει αντίθετη φορά από αυτήν. Όταν το σώμα περνά από την Θ.Ι. η συνολική δύναμη που δέχεται ισούται με μηδέν. (Για το λόγο αυτό, ονομάζεται θέση ισορροπίας της ταλάντωσης). Επίσης, στις ακραίες θέσεις της ταλάντωσης η ΣF είναι μεγίστη.


Στο βίντεο δες το διάνυσμα της δύναμης επαναφοράς (είναι πάντα προς την θέση ισορροπίας). 



Αν συμβολίσουμε το γινόμενο mω2 με D (που είναι σταθερό για κάθε ταλαντωτή), δηλαδή D = mω2
Τότε θα έχουμε τη σχέση που δίνει τη δύναμη:F = −Dx (Μάθε την απόδειξη)

Η παραπάνω σχέση είναι γνωστή και σαν συν…

Θέματα πανελληνίων εξετάσεων: Ταλαντώσεις

Τα θέματα των πανελληνίων μπορείς να τα δεις κι εδώ, αλλά σ’ αυτό το αρχείο θα βρεις όλα τα θέματα από το 2001 ως το 2012 τα οποία αναφέρονται στις ταλαντώσεις, αποκλειστικά,  μηχανικές, ηλεκτρικές. Καλή δουλειά σου εύχομαι.