Μετάβαση στο κύριο περιεχόμενο

Η διαίρεση με το μηδέν και μια απόδειξη ότι ο περιπτεράς της γειτονιάς σας είναι καρότο.

Ένα πρόβλημα στα μαθηματικά είναι οι πράξεις με το μηδέν και ιδιαίτερα η διαίρεση με παρονομαστή το μηδέν. Γύρω από αυτό το πρόβλημα (ή την απροσδιοριστία αν θέλεις) έχουν γραφτεί διάφορα, πολλά από τα οποία ήταν μπούρδες, περί αποδείξεως του θεού κι άλλα τέτοια.

Το παρακάτω κείμενο το οποίο το άντλησα από το blog Μαθη...μαγικα σου εξηγεί το εξής: πως μπορείς να αποδείξεις το οτιδήποτε κάνοντας μια λάθος μαθηματική υπόθεση.



Για δες: 

«Τι είναι το μηδέν, Μπαμπά ;»

«Ο αριθμός των φτερωτών ελεφάντων που στέκονται δίπλα σου.»

« Οι ροζ ή οι άσπροι;»

  
Το μηδέν δεν πειθαρχεί σε όλους τους κανόνες των αριθμών.O Ινδός μαθηματικός  Βραχμαγκούπτα παρότι ήταν ο πρώτος που ασχολήθηκε μαζί του ενδελεχώς, ομολογουμένως δεν κατάφερε να χειριστεί την διαίρεση. Την διαίρεσή ενός αριθμού με το μηδέν.Ο μεταγενέστερος του, επίσης Ινδός μαθηματικός Μπασκάρα γνώριζε ότι όσο μικρότερος είναι ο διαιρέτης σε μια διαίρεση τόσο  μεγαλύτερο είναι το πηλίκο που προκύπτει, κατά συνέπεια  όταν διαιρούμε το 5 με το μηδέν ουσιαστικά το χωρίζουμε σε άπειρα κομμάτια οπότε το αποτέλεσμα 5/0 είναι το άπειρο. Η απάντηση του όμως είναι λανθασμένη .Πως θα μπορούσαμε να συγκεντρώσουμε  μια άπειρη ποσότητα από τίποτα και να πάρουμε το 5;Τι συμβαίνει, πολύ απλά η διαίρεση δεν εκτελείται , δεν υπάρχει αποτέλεσμα. Δεν υπάρχει αριθμός που να πολλαπλασιάσουμε με το 0 και το αποτέλεσμα να  είναι 5. Αυτή καθαυτή η αδυναμία της διαίρεσης με το μηδέν  οδηγεί σε πολλά παράδοξα. Ο Charles Seife στο βιβλίο του Μηδέν. Η βιογραφία μιας επικίνδυνης έννοιας γράφει χαρακτηριστικά:

«Η διαίρεση με το μηδέν ... σας δίνει τη δυνατότητα να αποδείξετε, μαθηματικά οτιδήποτε  στο σύμπαν. Μπορείτε να αποδείξετε ότι 1 +1 = 42, και από εκεί μπορείτε να αποδείξετε ότι ο J. Edgar Hoover είναι ένας εξωγήινος, ότι ο William Shakespeare ήρθε από το Ουζμπεκιστάν, ή ακόμα και ότι ο ουρανός είναι πουά.»                                                                         


Υποθέτουμε ότι α=1 και β=1, για τις τιμές αυτές ισχύει η ισότητα: β2=αβ  (1)
Εφόσον το α ισούται με τον εαυτό του:  α22 (2)

Αφαιρούμε κατά μέλη τις (1) ,(2) και παραγοντοποιούμε τα δυο μέλη:
(2)-(1): α222 –αβ ή (α –β)(α+β)= α(α–β)  (3)

Διαιρούμε κατά δυο μέλη με τον παράγοντα α-β και προκύπτει:


Αρχικά όμως υποθέσαμε ότι β=1 οπότε προκύπτει 0=1  (4)

Γνωρίζουμε ότι ο περιπτεράς είχε ένα κεφάλι αλλά από την ισότητα (4)  ένα ίσον κανένα οπότε δεν έχει κεφάλι .Ο περιπτεράς δεν έχει κανένα μίσχο με φύλλα αλλά από την ισότητα (4) έχει ένα μίσχο με φύλλα.

Πολλαπλασιάζουμε  και τα δυο μέλη της ισότητας (4) με το 2 και έχουμε 0=2 (5)
Ο περιπτεράς έχει δυο χέρια αλλά 2=0 όποτε ο περιπτεράς  δεν έχει χέρια .Ομοίως αποδεικνύουμε ο περιπτεράς δεν έχει  δυο πόδια.

Τώρα ποιο είναι το χρώμα του περιπτερά. Γνωρίζουμε ότι το λευκό φως πέφτει στα αντικείμενα και αυτά απορροφούν κάποια μήκη κύματος και ανακλούν άλλα ,αυτά που ανακλούν δίνουν τον χρωματισμό του αντικείμενου. Έτσι το φως πέφτει πάνω στον περιπτερά και αυτός επανεκπέμπει φωτόνια. Ας πάρουμε οποιοδήποτε από αυτά τα φωτόνια. Πολλαπλασιάζουμε την ισότητα 0=1 με το μήκος κύματος των φωτονίων που εκπέμπει ο περιπτεράς, και προκύπτει:
(Μήκος κύματος φωτονίου περιπτερά)=0  (6) .

Πολλαπλασιάζουμε την ισότητα (6) με το 640 και προκύπτει.    640=0 (7)

Από την (7) και την (6) προκύπτει:

(Μήκος κύματος φωτονίου περιπτερά)=640 nm

Από την τελευταία ισότητα αντιλαμβανόμαστε ότι το  κάθε φωτόνιο που εκπέμπει ο περιπτεράς έχει μήκος κύματος 640 nm άρα το χρώμα του είναι πορτοκαλί. Ανακεφαλαιώνουμε:

Ο περιπτεράς δεν έχει κεφάλι, χέρια, πόδια έχει μίσχο με φύλλα και είναι χρώματος πορτοκαλί άρα πρόκειται για καρότο.

Όλα αυτά γιατί διαιρέσαμε με τον όρο α-β που ισούται με μηδέν.





Σχόλια

Δημοφιλείς αναρτήσεις από αυτό το ιστολόγιο

Απλή Αρμονική Ταλάντωση (Α.Α.Τ) Εξισώσεις κίνησης

Περιοδικά ονομάζονται τα φαινόμενα που επαναλαμβάνονται με τον ίδιο τρόπο σε ίσα χρονικά διαστήματα. Π.χ. ομαλή κυκλική κίνηση, κίνηση εκκρεμούς, περιστροφή γης γύρω από τον ήλιο κ.ά. (Σκέψου μερικά ακόμη …) Στοιχεία περιοδικής κίνησης Κάθε περιοδική κίνηση χαρακτηρίζεται από τα παρακάτω τρία στοιχειά: Περίοδος (Τ) ενός περιοδικού φαινομένου ονομάζεται ο χρόνος που απαιτείται για μια πλήρη επανάληψη του φαινομένου ή ο χρόνος που μεσολαβεί μεταξύ δύο διαδοχικών επαναλήψεων του φαινομένου. Η περίοδος είναι μονόμετρο μέγεθος και η μονάδα μέτρησής της είναι το 1 sec . Συχνότητα (f) ενός περιοδικού φαινομένου ονομάζεται το φυσικό μέγεθος του οποίου το μέτρο θα δίνεται από το σταθερό πηλίκο του αριθμού Ν των επαναλήψεων του φαινομένου σε κάποιο χρόνο t, προς το χρόνο αυτό.Δηλαδή:        Η συχνότητα είναι μονόμετρο μέγεθος και έχει μονάδα μέτρησης το 1 sec -1 ή 1 κύκλος/sec ή 1 Hz (Hertz) . Σχέση μεταξύ περιόδου – συχνότητας Επειδή σε χρόν

Ενέργεια Ταλάντωσης

Η ενέργεια της ταλάντωσης Ε (ή ολική ενέργεια) ενός συστήματος που εκτελεί απλή αρμονική ταλάντωση ισούται με την ενέργεια που προσφέραμε αρχικά στο σύστημα για να το θέσουμε σε κίνηση (ταλάντωση).  Η ενέργεια αυτή θα δίνεται από τη σχέση:  Από την σχέση αυτή προκύπτει ότι το πλάτος Α καθορίζεται από την ενέργεια  της ταλάντωσης, δηλαδή από την ενέργεια που προσφέραμε αρχικά στο σύστημα ώστε  να αρχίσει να ταλαντώνεται. Σε όλη την διάρκεια της ταλάντωσης η ενέργεια παραμένει  σταθερή. Η ενέργεια μιας απλής αρμονικής ταλάντωσης είναι σταθερή και ανάλογη µε το τετράγωνο του πλάτους της. Απόδειξη της παραπάνω σχέσης. Αν το σώμα βρίσκεται ακίνητο στην θέση ισορροπίας, για να μετακινηθεί σε µια άλλη θέση πρέπει να του ασκηθεί κατάλληλη εξωτερική δύναμη F εξ . Κατά την μετακίνηση αυτή θα ασκείται στο σώμα και η δύναμη επαναφοράς.  Για να μετακινηθεί το σώμα στην θέση (x) θα πρέπει το μέτρο της εξωτερικής δύναμης να είναι ίσο µε το μέτρο της δύναμης επανα

Ταλάντωση και Ελατήριο

Ελατήριο ονομάζεται ένα μηχανικό εξάρτημα το οποίο έχει την ικανότητα να αποθηκεύει μηχανική ενέργεια παραμορφώμενο προσωρινά. Συνήθως το σχήμα είναι ελικοειδές, αλλά υπάρχουν και ελατήρια σε σχήμα ράβδου, οι σούστες. Το κάθε ελατήριο μπορεί να παραμορφωθεί ως προς μία διάστασή του υπό την επίδραση δύναμης. Όταν ασκείται δύναμη σε αυτήν τη διάσταση, το ελατήριο παραμορφώνεται αποθηκεύοντας το έργο της δύναμης.   Ιδανικό ελατήριο Σε ιδανικά θεωρητικά ελατήρια ισχύει απόλυτα ο νόμος του Hook , δε χάνεται ενέργεια στο περιβάλλον και τα ελατήρια μπορούν πάντα να επιστρέψουν στο αρχικό τους μήκος. Επίσης η μάζα του ιδανικού ελατηρίου θεωρείται αμελητέα. [Στην πραγματικότητα χάνεται μικρό ποσό ενέργειας στο περιβάλλον ως θερμική ενέργεια, ενώ η παραμόρφωση μπορεί να γίνει μόνιμη. Κάθε ελατήριο έχει κάποια όρια αντοχής αν τα υπερβούν θα παραμορφωθεί ή θα σπάσει. Επιπλέον, με την επαναλαμβανόμενη χρήση το υλικό χάνει τις ιδιότητές του λόγω μηχανικής κόπωσης και αν δεν

Απλή Αρμονική Ταλάντωση (Α.Α.Τ) - Συνισταμένη Δύναμη

Από την Α΄ Λυκείου γνωρίζεις τον θεμελιώδη νόμο της Μηχανικής (2 ος νόμος του Newton), ΣF=mα . Επίσης, όπως γνωρίζεις για να υπάρχει επιτάχυνση πρέπει να υπάρχει και δύναμη που ασκείται σε κάποιο σώμα. Στην Α.Α.Τ. ισχύει α=-ω 2 x, ο συνδυασμός αυτών των δυο σχέσεων δίνει τη σχέση:  Σ F=-m ω 2 x     Από τη σχέση αυτή φαίνεται ότι όταν ένα σώμα εκτελεί απλή αρμονική ταλάντωση η συνολική δύναμη που δέχεται είναι ανάλογη με την απομάκρυνση του σώματος από την Θ.Ι. της τροχιάς του και έχει αντίθετη φορά από αυτήν. Όταν το σώμα περνά από την Θ.Ι. η συνολική δύναμη που δέχεται ισούται με μηδέν. (Για το λόγο αυτό, ονομάζεται θέση ισορροπίας της ταλάντωσης). Επίσης, στις ακραίες θέσεις της ταλάντωσης η ΣF είναι μεγίστη. Στο βίντεο δες το διάνυσμα της δύναμης επαναφοράς (είναι πάντα προς την θέση ισορροπίας).      Αν συμβολίσουμε το γινόμενο mω 2 με D (που είναι σταθερό για κάθε ταλαντωτή), δηλαδή D = mω 2 Τότε θα έχουμε τη σχέση που δίνει τ

Πως αποδεικνύουμε ότι ένα σώμα κάνει απλή αρμόνική ταλάντωση

Το είδες εδώ , τώρα λίγο πιο αναλυτικά. Σε ασκήσεις που έχουμε ένα σώμα συνδεδεμένο με ένα ελατήριο και μας ζητείται να αποδείξουμε ότι σώμα εκτελεί απλή αρμονική ταλάντωση δουλεύουμε πάντα έχοντας στο μυαλό μας ότι αρκεί να αποδείξουμε ότι σε μιά τυχαία θέση της κίνησης του σώματος η συνισταμένη δύναμη που ασκείται σε αυτό μπορεί να γραφεί στη μορφή:  Σ F=-Dx Για το σκοπό αυτό ακολουθούμε τα παρακάτω βήματα: 1. Σχεδιάζουμε το ελατήριο στη θέση φυσικού μήκους (ΘΦΜ). 2. Σχεδιάζουμε το σύστημα ελατήριο - σώμα στη θέση ισορροπίας του (Θ.Ι.) και   σχεδιάζουμε τις δυνάμεις που ασκούνται στο σώμα. (γράφουμε:)  Στη θέση ισορροπίας του συστήματος ισχύει   ΣF=0 Από τη σχέση αυτή για τη συνισταμένη των δυνάμεων στη θέση ισορροπίας προκύπτει μια συνθήκη για τις δυνάμεις που ασκούνται στο σώμα στην κατάσταση ισορροπίας. Δηλαδη:  Σ F =0  ή   mg - F ελ  =0   ή    mg = kx 1  (1) 3. Σχεδιάζουμε τις δυνάμεις που ασκούνται στο σώμα όταν το σώμα

Ταλάντωση και πλαστική κρούση

Θυμήσου την ορμή:  Για ένα σώμα μάζας m που κινείται µε ταχύτητα u η ορμή του p δίνεται από τη σχέση: p=mu Η ορμή p είναι ένα διανυσματικό μέγεθος το ο­ποίο έχει: μέτρο p = m u , διεύθυνση και φορά ίδια µε τη διεύθυνση και τη φορά της ταχύτητας u , μονάδα μέτρησης στο S.I. το 1 kg ∙ m/s (ισοδύναμη μονάδα είναι το 1 Ν∙s). Η ορμή, ως διανυσματικό μέγεθος, έχει όλες τις ιδιότητες των διανυσμάτων. Έτσι: μπορεί ν' αναλυθεί σε άξονες, δηλαδή σε συ­νιστώσες p x και p y, μεταβάλλεται αν μεταβληθεί τουλάχιστον ένα από τα στοιχεία της, δηλαδή το μέτρο της, η διεύθυνσή της ή η φορά της. Ο ρυθμός μεταβολής της ορμής (dp/dt) ισούται με την δύναμη ή τη συνισταμένη των δυνάμεων (ΣF) που ασκούνται στο σώμα. Προσοχή: Όταν στις ασκήσεις πρέπει να υπολογίσεις την μεταβολή της ορμής τότε θα υπολογίζεις την σχέση:    Δp = p τελ – p αρχ Ενώ όταν  ζητείται ο ρυθμό μεταβολής της ορμής θα υπολογίζεις τη σχέση:  dp/dt  ή Σ F.

Θέματα πανελληνίων εξετάσεων: Ταλαντώσεις

Τα θέματα των πανελληνίων μπορείς να τα δεις κι εδώ , αλλά σ’ αυτό το αρχείο θα βρεις όλα τα θέματα από το 2001 ως το 2012 τα οποία αναφέρονται στις ταλαντώσεις, αποκλειστικά,  μηχανικές, ηλεκτρικές. Καλή δουλειά σου εύχομαι. 

Μαγνήτες πηνία και ηλεκτρικό ρεύμα.

Ο Michael Faraday δημιούργησε την πρώτη ηλεκτρική γεννήτρια το 1831 χρησιμοποιώντας ένα πηνίο και ένα μόνιμο μαγνήτη. Όταν ο μαγνήτης άλλαζε θέση σε σχέση με το πηνίο, αναπτυσσόταν ηλεκτρικό ρεύμα. Ένα παρόμοιο πείραμα μπορεί να πραγματοποιηθεί με ένα σωλήνα χαλκού και έναν μαγνήτη. Παρά το γεγονός ότι ο χαλκός δεν είναι μαγνητικό υλικό, κατά την πτώση του μαγνήτη μέσα από τον σωλήνα δημιουργείται ένα μαγνητικό πεδίο με αποτέλεσμα την ανάπτυξη ηλεκτρικού ρεύματος. Το ρεύμα με τη σειρά του δημιουργεί μαγνητικό πεδίο το οποίο αντιτίθεται στην κίνηση του μαγνήτη καθυστερώντας την πτώση του. Η παραπάνω λειτουργία δημιουργεί ηλεκτρική ενέργεια η οποία στη συνέχεια διαχέεται στην ατμόσφαιρα με τη μορφή θερμότητας. Η ίδια βασική αρχή χρησιμοποιείται για την παραγωγή ηλεκτρικής ενέργειας σε όλο τον κόσμο. Απλό. Δεν είχε ιδέα τι θα ακολουθούσε .  Source:  1veritasium

Αρχική Φάση Στην Απλή Αρμονική Ταλάντωση (Α.Α.Τ.) - Μεθοδολογία και Ασκήσεις

Σκοπός: Η ανάπτυξη δεξιοτήτων στις τριγωνομετρικές εξισώσεις σε συνδυασμό με τα βασικά μεγέθη της απλής αρμονικής ταλάντωσης .  Απαιτούμενες γνώσεις: Τριγωνομετρικές Εξισώσεις – Εξισώσεις στην Α.Α.Τ. Βασικές παρατηρήσεις:  1. Η ταλάντωση ενός σώματος δεν έχει αρχική φάση μόνο στην κατάσταση κατά την οποία τη χρονική στιγμή t=0 το σώμα διέρχεται από τη θέση ισορροπίας του έχοντας θετική ταχύτητα. Σε οποιαδήποτε άλλη κατάσταση η ταλάντωση του σώματος έχει αρχική φάση και την υπολογίζουμε μέσω των τριγωνομετρικών εξισώσεων.  2. Η αρχική φάση μιας απλής αρμονικής με βάση το σχολικό βιβλίο παίρνει τιμές:  0≤φο<2π rad. 3. Για να προσδιορίσουμε την αρχική φάση πρέπει να γνωρίζουμε σε κάποια χρονική στιγμή (συνήθως τη στιγμή t=0) την κατάσταση που βρίσκεται ο ταλαντωτής (δηλαδή, τις αλγεβρικές τιμές τουλάχιστον δύο μεγεθών: ταχύτητα, θέση, επιτάχυνση). Απλές ασκήσεις εφαρμογής των παραπάνω. 1. Στις παρακάτω περιπτώσεις να βρεθεί η αρχική φάση της ταλάντωσης, βασική προϋπόθεση: η κίνηση είνα

Θα μπορούσε η γη να είναι επίπεδη;

Όχι, προφανώς αλλά υπάρχουν αρκετοί υποστηρικτές της επίπεδης γης, σύμφωνα με το forum the flat earth society , σαράντα χιλιάδες μη λογικοί άνθρωποι πιστεύουν ότι η γη είναι επίπεδη, σήμερα, όχι πριν τρεις χιλιάδες χρόνια. Με το θέμα ασχολήθηκε ο  Μάικλ Στίβενς , όχι με τις ψεκασμένες απόψεις αλλά με την επιστημονική λογική, αν αυτή υφίσταται, σε μια επίπεδη γη.  Ένας λόγος για τον οποίο οι θεωρίες συνωμοσίας είναι δημοφιλείς είναι επειδή οι άνθρωποι έχουν μια φυσική τάση να αναζητούν νόημα σε διαφορετικά τυχαία γεγονότα. Ο νευρολόγος Klaus Konrad επινόησε τον όρο αποφένια το 1948 για να χαρακτηρίσει την έναρξη της παραληρητικές σκέψης στην ψύχωση - ως όρος σημαίνει την εμπειρία του να δει κάποιος νόημα, οικεία μοτίβα ή συνδέσεις σε τυχαία δεδομένα [...] Μια από τις πιο γνωστές θεωρίες συνωμοσίας ήταν η πρώτη προσσελήνωση (1969) και ειδικά το φαινόμενο του «κυματισμού της αμερικάνικης σημαίας». Με δεδομένο ότι στην Σελήνη δεν υπάρχει αέρας και ως εκ τούτου άνεμος, που να