Μετάβαση στο κύριο περιεχόμενο

#7 Links: Για διάβασμα.


Ο Δημήτρης Νανόπουλος δίνει τις δικές του εκδοχές σε βασικές αξίες: 
Λάθη: «Όπως έλεγε ο Οσκαρ Ουάιλντ: ‘Εμπειρία είναι το όνομα που ο καθένας δίνει στα λάθη του’. Αν δεν κάνεις λάθη, δεν ζεις. Ο Φάινμαν, που είχε κάνει πολλά λάθη, ακόμα και στα δικά του διαγράμματα –και αυτό δεν το λέω υποτιμητικά, έλεγε και γέλαγε: ‘ο μόνος τρόπος να μην κάνεις λάθη είναι να μην κάνεις τίποτα’».

Παιδεία: «Πέρα από την εγκύκλια παιδεία, πιο σημαντική είναι η ευρύτερη καλλιέργεια και κουλτούρα κάθε ανθρώπου. Τα πτυχία και τα μεταπτυχιακά δεν σου εξασφαλίζουν ότι έχεις παιδεία. Η παιδεία ξεκινά μέσα από την οικογένεια, από τα ‘μαθήματα’ που θα πάρει το παιδί πρακτικά, δια της μίμησης και του παραδείγματος, από τη μητέρα του και τον πατέρα του, και μετά έρχεται το σχολείο. Αυτά που υποφέρει σήμερα η Ελλάδα είναι αποτέλεσμα ελλειμματικής παιδείας, σε όλα τα επίπεδα».



2. Η Ιστορία του μολυβιού.

Το σύγχρονο μολύβι εφευρέθηκε το 1795 από τον Jacques Conte, έναν επιστήμονα που υπηρετούσε στο στρατό του Ναπολέοντα Βοναπάρτη. Το «μαγικό» υλικό που ήταν κατάλληλο για το σκοπό αυτό ήταν ο καθαρός άνθρακας που ονομάζεται γραφίτης. Ανακαλύφθηκε για πρώτη φορά στην Ευρώπη, στη Βαυαρία κατά την έναρξη του δέκατου πέμπτου αιώνα, αν και οι Αζτέκοι αρκετές εκατοντάδες χρόνια πριν χρησιμοποιούσαν κάτι ανάλογο. Πιστεύεται ότι χρησιμοποιούσαν μια μορφή μολύβδου την οποία ονόμαζαν «γραφίτη». Η ονομασία γραφίτης δόθηκε  το 1789, από την ελληνική λέξη «graphein» που σημαίνει «να γράψει». Μολύβι είναι μια παλαιότερη λέξη, που προέρχεται από το λατινικό «pencillus», που σημαίνει «μικρή ουρά», για να περιγράψει τις μικρές βούρτσες μελάνι που χρησιμοποιούσαν για τη γραφή στο Μεσαίωνα.


3. Γιατί ο Carl Sagan είναι αναντικατάστατος.

Μιας και η εβδομάδα που πέρασε ήταν εβδομάδα του Sagan, είχε γεννηθεί στις 9 Νοέμβριου του 1934, το ίντερνετ του αφιέρωσε αρκετό χώρο.  Στο λίνκ που παραθέτω, υπάρχει ένα παλαιότερο κείμενο που είχε γραφτεί για αυτόν, είναι κοντά στις πέντε χιλιάδες λέξεις, αλλά αξίζει η ανάγνωση του.
Sagan had a few core beliefs, including the sense that there is an order and logic to the universe, that it is fundamentally a benign place, congenial to life and even intelligent life. His cosmos was primed for self-awareness. He sensed that humanity was on the cusp of making a cosmic connection with advanced civilizations (and no doubt that a certain Brooklyn native would be in on the conversation!). In effect, he believed he was fortunate enough to live in a special moment. That notion rubs uncomfortably against the Copernican principle, after the 16th-century discovery that the Earth is not the center of the solar system, which tells us that we should never assume we are in a special place—not in space and not in time.


4. Οι εντυπωσιακές φωτογραφίες από την έκρηξη του πυραύλου Antares. 

Η NASA αποφάσισε να δώσει στη δημοσιότητα φωτογραφίες από την έκρηξη του μη επανδρωμένου πυραύλου Antares, ο οποίος δημιούργησε αντάρα, αφού 15 δευτερόλεπτα μετά την εκτόξευσή του έπεσε πάλι στη βάση της NASA και εξερράγη. Ο μη επανδρωμένος πύραυλος μετέφερε 2.267 κιλά προμήθειες για τους αστροναύτες στον Διεθνή Διαστημικό Σταθμό. Το κόστος της ζημιάς άγγιξε τα 15 εκατομμύρια δολάρια. 




Έχω μια αδυναμία στους μύθους των επιστημών, ουσιαστικά, δείχνουν το πώς αντιμετωπίζεται η επιστήμη στην εκάστοτε εποχή.
2ος Μύθος: Οι μαύρες τρύπες λειτουργούν σαν χωροχρονικές σήραγγες.Αν και δεν μπορεί να αποκλεισθεί από μαθηματικής άποψης, αυτό το ενδεχόμενο είναι αρκετά προβληματικό. Είναι αλήθεια πως υπάρχουν όντως λύσεις των εξισώσεων της Γενικής Σχετικότητας, οι οποίες υποδεικνύουν ότι μια τέτοια κοσμική δομή θα μπορούσε να συνδέει δύο απομακρυσμένα σημεία στο σύμπαν ή δύο διαφορετικές χρονικές στιγμές.Ωστόσο, οι λύσεις αυτές παύουν να ισχύουν αν η μαύρη τρύπα περιστρέφεται ή διαταραχθεί, για παράδειγμα όταν απορροφήσει κάποιο αντικείμενο. Ακόμη χειρότερα, είναι απίθανο να καταφέρουμε ποτέ να ελέγξουμε στην πράξη κατά πόσο λειτουργεί όντως σαν χωροχρονική σήραγγα.Ο λόγος είναι πως οι επιστήμονες δεν μπορούν να κρατήσουν επικοινωνία με όποιο αντικείμενο βρεθεί μέσα σε μία μαύρη τρύπα. Κι αυτό γιατί τα σήματά του δεν είναι δυνατόν να “δραπετεύσουν” από το πανίσχυρο βαρυτικό πεδίο, ακόμη κι αν κινούνται με την ταχύτητα του φωτός.

Σχόλια

Δημοφιλείς αναρτήσεις από αυτό το ιστολόγιο

Απλή Αρμονική Ταλάντωση (Α.Α.Τ) Εξισώσεις κίνησης

Περιοδικά ονομάζονται τα φαινόμενα που επαναλαμβάνονται με τον ίδιο τρόπο σε ίσα χρονικά διαστήματα. Π.χ. ομαλή κυκλική κίνηση, κίνηση εκκρεμούς, περιστροφή γης γύρω από τον ήλιο κ.ά. (Σκέψου μερικά ακόμη …) Στοιχεία περιοδικής κίνησης Κάθε περιοδική κίνηση χαρακτηρίζεται από τα παρακάτω τρία στοιχειά: Περίοδος (Τ) ενός περιοδικού φαινομένου ονομάζεται ο χρόνος που απαιτείται για μια πλήρη επανάληψη του φαινομένου ή ο χρόνος που μεσολαβεί μεταξύ δύο διαδοχικών επαναλήψεων του φαινομένου. Η περίοδος είναι μονόμετρο μέγεθος και η μονάδα μέτρησής της είναι το 1 sec . Συχνότητα (f) ενός περιοδικού φαινομένου ονομάζεται το φυσικό μέγεθος του οποίου το μέτρο θα δίνεται από το σταθερό πηλίκο του αριθμού Ν των επαναλήψεων του φαινομένου σε κάποιο χρόνο t, προς το χρόνο αυτό.Δηλαδή:        Η συχνότητα είναι μονόμετρο μέγεθος και έχει μονάδα μέτρησης το 1 sec -1 ή 1 κύκλος/sec ή 1 Hz (Hertz) . Σχέση μεταξύ περιόδου – συχνότητας Επειδή σε χρόν

Ενέργεια Ταλάντωσης

Η ενέργεια της ταλάντωσης Ε (ή ολική ενέργεια) ενός συστήματος που εκτελεί απλή αρμονική ταλάντωση ισούται με την ενέργεια που προσφέραμε αρχικά στο σύστημα για να το θέσουμε σε κίνηση (ταλάντωση).  Η ενέργεια αυτή θα δίνεται από τη σχέση:  Από την σχέση αυτή προκύπτει ότι το πλάτος Α καθορίζεται από την ενέργεια  της ταλάντωσης, δηλαδή από την ενέργεια που προσφέραμε αρχικά στο σύστημα ώστε  να αρχίσει να ταλαντώνεται. Σε όλη την διάρκεια της ταλάντωσης η ενέργεια παραμένει  σταθερή. Η ενέργεια μιας απλής αρμονικής ταλάντωσης είναι σταθερή και ανάλογη µε το τετράγωνο του πλάτους της. Απόδειξη της παραπάνω σχέσης. Αν το σώμα βρίσκεται ακίνητο στην θέση ισορροπίας, για να μετακινηθεί σε µια άλλη θέση πρέπει να του ασκηθεί κατάλληλη εξωτερική δύναμη F εξ . Κατά την μετακίνηση αυτή θα ασκείται στο σώμα και η δύναμη επαναφοράς.  Για να μετακινηθεί το σώμα στην θέση (x) θα πρέπει το μέτρο της εξωτερικής δύναμης να είναι ίσο µε το μέτρο της δύναμης επανα

Ταλάντωση και Ελατήριο

Ελατήριο ονομάζεται ένα μηχανικό εξάρτημα το οποίο έχει την ικανότητα να αποθηκεύει μηχανική ενέργεια παραμορφώμενο προσωρινά. Συνήθως το σχήμα είναι ελικοειδές, αλλά υπάρχουν και ελατήρια σε σχήμα ράβδου, οι σούστες. Το κάθε ελατήριο μπορεί να παραμορφωθεί ως προς μία διάστασή του υπό την επίδραση δύναμης. Όταν ασκείται δύναμη σε αυτήν τη διάσταση, το ελατήριο παραμορφώνεται αποθηκεύοντας το έργο της δύναμης.   Ιδανικό ελατήριο Σε ιδανικά θεωρητικά ελατήρια ισχύει απόλυτα ο νόμος του Hook , δε χάνεται ενέργεια στο περιβάλλον και τα ελατήρια μπορούν πάντα να επιστρέψουν στο αρχικό τους μήκος. Επίσης η μάζα του ιδανικού ελατηρίου θεωρείται αμελητέα. [Στην πραγματικότητα χάνεται μικρό ποσό ενέργειας στο περιβάλλον ως θερμική ενέργεια, ενώ η παραμόρφωση μπορεί να γίνει μόνιμη. Κάθε ελατήριο έχει κάποια όρια αντοχής αν τα υπερβούν θα παραμορφωθεί ή θα σπάσει. Επιπλέον, με την επαναλαμβανόμενη χρήση το υλικό χάνει τις ιδιότητές του λόγω μηχανικής κόπωσης και αν δεν

Απλή Αρμονική Ταλάντωση (Α.Α.Τ) - Συνισταμένη Δύναμη

Από την Α΄ Λυκείου γνωρίζεις τον θεμελιώδη νόμο της Μηχανικής (2 ος νόμος του Newton), ΣF=mα . Επίσης, όπως γνωρίζεις για να υπάρχει επιτάχυνση πρέπει να υπάρχει και δύναμη που ασκείται σε κάποιο σώμα. Στην Α.Α.Τ. ισχύει α=-ω 2 x, ο συνδυασμός αυτών των δυο σχέσεων δίνει τη σχέση:  Σ F=-m ω 2 x     Από τη σχέση αυτή φαίνεται ότι όταν ένα σώμα εκτελεί απλή αρμονική ταλάντωση η συνολική δύναμη που δέχεται είναι ανάλογη με την απομάκρυνση του σώματος από την Θ.Ι. της τροχιάς του και έχει αντίθετη φορά από αυτήν. Όταν το σώμα περνά από την Θ.Ι. η συνολική δύναμη που δέχεται ισούται με μηδέν. (Για το λόγο αυτό, ονομάζεται θέση ισορροπίας της ταλάντωσης). Επίσης, στις ακραίες θέσεις της ταλάντωσης η ΣF είναι μεγίστη. Στο βίντεο δες το διάνυσμα της δύναμης επαναφοράς (είναι πάντα προς την θέση ισορροπίας).      Αν συμβολίσουμε το γινόμενο mω 2 με D (που είναι σταθερό για κάθε ταλαντωτή), δηλαδή D = mω 2 Τότε θα έχουμε τη σχέση που δίνει τ

Πως αποδεικνύουμε ότι ένα σώμα κάνει απλή αρμόνική ταλάντωση

Το είδες εδώ , τώρα λίγο πιο αναλυτικά. Σε ασκήσεις που έχουμε ένα σώμα συνδεδεμένο με ένα ελατήριο και μας ζητείται να αποδείξουμε ότι σώμα εκτελεί απλή αρμονική ταλάντωση δουλεύουμε πάντα έχοντας στο μυαλό μας ότι αρκεί να αποδείξουμε ότι σε μιά τυχαία θέση της κίνησης του σώματος η συνισταμένη δύναμη που ασκείται σε αυτό μπορεί να γραφεί στη μορφή:  Σ F=-Dx Για το σκοπό αυτό ακολουθούμε τα παρακάτω βήματα: 1. Σχεδιάζουμε το ελατήριο στη θέση φυσικού μήκους (ΘΦΜ). 2. Σχεδιάζουμε το σύστημα ελατήριο - σώμα στη θέση ισορροπίας του (Θ.Ι.) και   σχεδιάζουμε τις δυνάμεις που ασκούνται στο σώμα. (γράφουμε:)  Στη θέση ισορροπίας του συστήματος ισχύει   ΣF=0 Από τη σχέση αυτή για τη συνισταμένη των δυνάμεων στη θέση ισορροπίας προκύπτει μια συνθήκη για τις δυνάμεις που ασκούνται στο σώμα στην κατάσταση ισορροπίας. Δηλαδη:  Σ F =0  ή   mg - F ελ  =0   ή    mg = kx 1  (1) 3. Σχεδιάζουμε τις δυνάμεις που ασκούνται στο σώμα όταν το σώμα

Ταλάντωση και πλαστική κρούση

Θυμήσου την ορμή:  Για ένα σώμα μάζας m που κινείται µε ταχύτητα u η ορμή του p δίνεται από τη σχέση: p=mu Η ορμή p είναι ένα διανυσματικό μέγεθος το ο­ποίο έχει: μέτρο p = m u , διεύθυνση και φορά ίδια µε τη διεύθυνση και τη φορά της ταχύτητας u , μονάδα μέτρησης στο S.I. το 1 kg ∙ m/s (ισοδύναμη μονάδα είναι το 1 Ν∙s). Η ορμή, ως διανυσματικό μέγεθος, έχει όλες τις ιδιότητες των διανυσμάτων. Έτσι: μπορεί ν' αναλυθεί σε άξονες, δηλαδή σε συ­νιστώσες p x και p y, μεταβάλλεται αν μεταβληθεί τουλάχιστον ένα από τα στοιχεία της, δηλαδή το μέτρο της, η διεύθυνσή της ή η φορά της. Ο ρυθμός μεταβολής της ορμής (dp/dt) ισούται με την δύναμη ή τη συνισταμένη των δυνάμεων (ΣF) που ασκούνται στο σώμα. Προσοχή: Όταν στις ασκήσεις πρέπει να υπολογίσεις την μεταβολή της ορμής τότε θα υπολογίζεις την σχέση:    Δp = p τελ – p αρχ Ενώ όταν  ζητείται ο ρυθμό μεταβολής της ορμής θα υπολογίζεις τη σχέση:  dp/dt  ή Σ F.

Αρχική Φάση Στην Απλή Αρμονική Ταλάντωση (Α.Α.Τ.) - Μεθοδολογία και Ασκήσεις

Σκοπός: Η ανάπτυξη δεξιοτήτων στις τριγωνομετρικές εξισώσεις σε συνδυασμό με τα βασικά μεγέθη της απλής αρμονικής ταλάντωσης .  Απαιτούμενες γνώσεις: Τριγωνομετρικές Εξισώσεις – Εξισώσεις στην Α.Α.Τ. Βασικές παρατηρήσεις:  1. Η ταλάντωση ενός σώματος δεν έχει αρχική φάση μόνο στην κατάσταση κατά την οποία τη χρονική στιγμή t=0 το σώμα διέρχεται από τη θέση ισορροπίας του έχοντας θετική ταχύτητα. Σε οποιαδήποτε άλλη κατάσταση η ταλάντωση του σώματος έχει αρχική φάση και την υπολογίζουμε μέσω των τριγωνομετρικών εξισώσεων.  2. Η αρχική φάση μιας απλής αρμονικής με βάση το σχολικό βιβλίο παίρνει τιμές:  0≤φο<2π rad. 3. Για να προσδιορίσουμε την αρχική φάση πρέπει να γνωρίζουμε σε κάποια χρονική στιγμή (συνήθως τη στιγμή t=0) την κατάσταση που βρίσκεται ο ταλαντωτής (δηλαδή, τις αλγεβρικές τιμές τουλάχιστον δύο μεγεθών: ταχύτητα, θέση, επιτάχυνση). Απλές ασκήσεις εφαρμογής των παραπάνω. 1. Στις παρακάτω περιπτώσεις να βρεθεί η αρχική φάση της ταλάντωσης, βασική προϋπόθεση: η κίνηση είνα

Θέματα πανελληνίων εξετάσεων: Ταλαντώσεις

Τα θέματα των πανελληνίων μπορείς να τα δεις κι εδώ , αλλά σ’ αυτό το αρχείο θα βρεις όλα τα θέματα από το 2001 ως το 2012 τα οποία αναφέρονται στις ταλαντώσεις, αποκλειστικά,  μηχανικές, ηλεκτρικές. Καλή δουλειά σου εύχομαι. 

Κεντρομόλος δύναμη, φυγόκεντρος δύναμη και μπογιά: Τέχνη.

Κεντρομόλος δύναμη: Όταν ένα σώμα εκτελεί κυκλική κίνηση, δηλαδή περιστρέφεται διαγράφοντας κύκλο γύρω από ένα σταθερό σημείο στον χώρο, τότε στο σώμα ασκείται δύναμη η οποία έχει φορά προς το κέντρο του κύκλου αυτού που διαγράφει η τροχιά του. Αυτή η δύναμη ονομάζεται κεντρομόλος. Η κεντρομόλος δύναμη είναι η συνιστώσα της συνολικής δύναμης που ασκείται στο σώμα κατά τη διεύθυνση που ορίζει κάθε στιγμή η θέση του με το κέντρο της κυκλικής τροχιάς του, έχει κατεύθυνση (φορά) προς το κέντρο αυτό και είναι κάθε χρονική στιγμή κάθετη στην ταχύτητα του σώματος. Φυγόκεντρος δύναμη: Η φυγόκεντρος δύναμη είναι φαινόμενη (ψευδής) δύναμη που «αισθάνεται» ένα σώμα το οποίο εκτελεί κυκλική κίνηση, η οποία μοιάζει να το σπρώχνει (ή να το τραβά) να φύγει από την κυκλική του τροχιά, προς τα έξω. Κάθε σώμα που κινείται σε μη επιταχυνόμενο σύστημα αναφοράς τείνει να διατηρήσει την ταχύτητα προς την κατεύθυνση που έχει κάθε στιγμή. Η εξανάγκαση ενός σώματος να κινείται κυκλικά και όχι ευθύγρ

Μαγνήτες πηνία και ηλεκτρικό ρεύμα.

Ο Michael Faraday δημιούργησε την πρώτη ηλεκτρική γεννήτρια το 1831 χρησιμοποιώντας ένα πηνίο και ένα μόνιμο μαγνήτη. Όταν ο μαγνήτης άλλαζε θέση σε σχέση με το πηνίο, αναπτυσσόταν ηλεκτρικό ρεύμα. Ένα παρόμοιο πείραμα μπορεί να πραγματοποιηθεί με ένα σωλήνα χαλκού και έναν μαγνήτη. Παρά το γεγονός ότι ο χαλκός δεν είναι μαγνητικό υλικό, κατά την πτώση του μαγνήτη μέσα από τον σωλήνα δημιουργείται ένα μαγνητικό πεδίο με αποτέλεσμα την ανάπτυξη ηλεκτρικού ρεύματος. Το ρεύμα με τη σειρά του δημιουργεί μαγνητικό πεδίο το οποίο αντιτίθεται στην κίνηση του μαγνήτη καθυστερώντας την πτώση του. Η παραπάνω λειτουργία δημιουργεί ηλεκτρική ενέργεια η οποία στη συνέχεια διαχέεται στην ατμόσφαιρα με τη μορφή θερμότητας. Η ίδια βασική αρχή χρησιμοποιείται για την παραγωγή ηλεκτρικής ενέργειας σε όλο τον κόσμο. Απλό. Δεν είχε ιδέα τι θα ακολουθούσε .  Source:  1veritasium