Μετάβαση στο κύριο περιεχόμενο

#18 Links: Για διάβασμα.

Ξέρετε, υπάρχουν άνθρωποι οι οποίοι πιστεύουν ότι ποτέ δεν πήγαμε στο φεγγάρι και μπορεί αυτό να είναι ένα παγκόσμιο μυστικό, ή υπάρχουν άλλοι οι οποίοι θεωρούν ότι μας ψεκάζουν, για αυτό είμαστε αυτό που είμαστε ή ότι δεν είμαστε αυτό που έπρεπε να είμαστε (λολ ωρε) τέλος πάντων. Ή υπάρχουν κι άλλοι οι οποίοι νομίζουν ότι οι φαρμακευτικές εταιρίες μας κρύβουν το φάρμακο για τον καρκίνο κι αυτό θα μπορούσε να μείνει μυστικό για πάντα.   

Η επιστήμη όμως, μετράει πράγματα και αποδίδει δεδομένα τα οποία δύσκολα αμφισβητούνται, αυτό κάνει κι ο Δρ. Ντέιβιντ Ρόμπερτ Γκράιμς, συλλέγει δεδομένα για τις μπουρδοσυνομωσίες και προσδιορίζει μετά από πόσο χρόνο θα αποκαλυφθούν, αν υπάρχουν στην πραγματικότητα. Στο τέλος, λέει, τίποτα δεν μένει κρυφό άρα δύσκολα μπορεί να υπάρξει συνομωσία για μεγάλο χρονικό διάστημα. #SorrynotSorry
Οι επανδρωμένες αποστολές στη Σελήνη δεν συνέβησαν ποτέ: αυτό θα απαιτούσε την εμπλοκή 411.000 εργαζομένων της NASA και θα είχε αποκαλυφθεί σε 3 χρόνια και οκτώ μήνες.
Η κλιματική αλλαγή είναι απάτη: θα απαιτούσε τη σιωπή 405.000 επιστημόνων και θα είχε αποκαλυφθεί σε 3 χρόνια και 9 μήνες.
Τα εμβόλια προκαλούν αυτισμό: θα απαιτούσε 736.000 άτομα σε υπηρεσίες υγείας και φαρμακοβιομηχανίες και θα είχε αποκαλυφθεί σε 3 χρόνια και δύο μήνες. 
Οι φαρμακοβιομηχανίες αποκρύπτουν τη θεραπεία για τον καρκίνο: θα απαιτούσε 714.000 συνωμότες και θα είχε αποκαλυφθεί σε 3 χρόνια και τρεις μήνες.


Ο Κωνσταντίνος Μπαχάς διευθύνει το εργαστήριο θεωρητικής φυσικής στη φημισμένη σχολή École normale supérieure στο Παρίσι.
Για εκείνους τους επιστήμονες που πιστεύουν ότι η πρόοδος είναι η αναγωγή των φυσικών φαινομένων σε κάποιες, λίγες, θεμελιώδεις και αναπόφευκτες αρχές μια τέτοια εξήγηση θα ήταν απογοητευτική. Από την άλλη, δεν υπάρχει εκ των προτέρων βεβαιότητα ότι με την αναγωγή μπορούν να εξηγηθούν όλα. Ένα παράδειγμα είναι η ερώτηση «γιατί η Γη απέχει περίπου 150 εκατομμύρια χιλιόμετρα από τον Ήλιο;» Σε αυτό δεν υπάρχει κάποια θεμελιώδης εξήγηση. Μπορούμε απλά να πούμε πως αν ήταν πολύ διαφορετική η απόσταση δεν θα υπήρχαν οι κατάλληλες συνθήκες για να υπάρχει ζωή, και άρα και εμείς για να μετρήσουμε αυτήν την απόσταση. Παρόμοια, θα μπορούσαμε να πούμε ότι ζούμε σε ένα Σύμπαν που επιτρέπει την ύπαρξη του ανθρώπου και ότι αυτό δικαιολογεί εκ των υστέρων τις τιμές των φυσικών σταθερών (όπως η δύναμης της βαρύτητας, η μάζα του ηλεκτρονίου κλπ). Σίγουρα μια τέτοια εξήγηση είναι πολύ λιγότερο πειστική και επιδραστική από ένα υπολογισμό που θα προσδιόριζε ένα μοναδικό Σύμπαν και τις ιδιότητες αυτού. Όμως δεν μπορούμε λογικά να την αποκλείσουμε.


«Πειράματα σε υποατομικά σωμάτια κατά τα τελευταία 50 χρόνια, έδειξαν ότι η Φύση δεν αντιμετωπίζει το ίδιο και τις δυο κατευθύνσεις του χρόνου. Ιδιαιτέρως, υποατομικά σωμάτια που ονομάζονται K και B μεσόνια συμπεριφέρονται ελαφρώς διαφορετικά σε σχέση με την κατεύθυνση του χρόνου. Όταν αυτή η λεπτή συμπεριφορά περιλαμβάνεται σε ένα μοντέλο του Σύμπαντος, αυτό που βλέπουμε είναι το Σύμπαν να αλλάζει από το να είναι σταθερό σε μια στιγμή στο χρόνο προς το να εξελίσσεται συνεχώς. Με άλλα λόγια, η λεπτή συμπεριφορά εμφανίζεται να είναι υπεύθυνη στο να κάνει το σύμπαν να κινείται προς τα εμπρός στο χρόνο. Η κατανόηση πώς, η εξέλιξη του χρόνου, συμβαίνει με αυτόν τον τρόπο, ανοίγει μια ολοκληρωτικά νέα θέα στη θεμελιώδη φύση του ίδιου του χρόνου. Μπορεί ακόμη να μας βοηθήσει να κατανοήσουμε καλύτερα περίεργες ιδέες, όπως το να ταξιδέψουμε πίσω στο χρόνο».


Δεν θέλουν επανάσταση (revolution), θέλουν εξέλιξη (evolution) οι Φινλανδοί, και η κ. Βόλμαρι αξιοποιεί τη ρίμα μεταξύ των δύο αγγλικών λέξεων για να καταδείξει τη φιλοσοφία του εκπαιδευτικού συστήματος της χώρας της, που έχει κατακτήσει την κορυφή μεταξύ των προηγμένων χωρών διεθνώς –η Φινλανδία βρίσκεται στις πρώτες θέσεις της κατάταξης στον διαγωνισμό PISA του ΟΟΣΑ–, και αποτελεί πρότυπο.Το εκπαιδευτικό σύστημα της Φινλανδίας βασίζεται στη σταθερότητα, την οργάνωση και την εμπιστοσύνη στους εκπαιδευτικούς όλων των βαθμίδων, από το νηπιαγωγείο έως και το πανεπιστήμιο. Οι ίδιοι οι Φινλανδοί δίνουν μεγάλο βάρος στη λειτουργία των θεσμών και εμπιστεύονται τους εκπαιδευτικούς.


Ένα ξεπερασμένο σύστημα αξιολόγησης.
Two principles explain why it is never permissible to use a single test result to judge someone’s potential. The jaggedness principle holds that all mental qualities we care about – intelligence, character, talent, performance – are multi-dimensional. Whenever we try to reduce the true complexity of someone’s abilities into a simple number, we lose everything important about the individual.
Secondly, the context principle asserts that performance always depends on the interaction of a specific individual and situation; it is meaningless to evaluate any performance without reference to the particular environment in which the individual performs. Multiple-choice tests will not evaluate someone’s ability to drive a car on the road.


Λογοκλοπή; Κλεφτές ματιές στις σημειώσεις μίας νεαρής γυναίκας που στις αρχές του ‘50 προσπαθούσε επίμονα να χωρέσει την επιστημοσύνη της σε μία κοινωνία ανδρών; Συμφωνία και προπαγάνδα εναντίον της «καημένης Ρόζι», που χωρίς τη συμβολή της δύσκολα ή τουλάχιστον σημαντικά αργότερα θα λυνόταν η αποκωδικοποίηση του γονιδιώματος όλων των μορφών ζωής και ιών; Ακαδημαϊκός μισογυνισμός και έμφυλες διακρίσεις στα επιστημονικά εργαστήρια της εποχής;   Και ναι, και όχι, και πολύ περίπου, και μισόλογα να συντηρούν μέχρι σήμερα έναν ανοιχτό διάλογο για τη θέση των γυναικών στα εργαστήρια.

Μέσα από τις φωτογραφίες μου προσπαθώ να περιγράψω το δέος που νιώθω κάθε φορά που στέκομαι ακίνητος κάτω από τον "Κόσμο".


Αυτά που λέτε, καλό Φεβρουάριο να έχετε.

Σχόλια

Δημοφιλείς αναρτήσεις από αυτό το ιστολόγιο

Απλή Αρμονική Ταλάντωση (Α.Α.Τ) Εξισώσεις κίνησης

Περιοδικά ονομάζονται τα φαινόμενα που επαναλαμβάνονται με τον ίδιο τρόπο σε ίσα χρονικά διαστήματα. Π.χ. ομαλή κυκλική κίνηση, κίνηση εκκρεμούς, περιστροφή γης γύρω από τον ήλιο κ.ά. (Σκέψου μερικά ακόμη …) Στοιχεία περιοδικής κίνησης Κάθε περιοδική κίνηση χαρακτηρίζεται από τα παρακάτω τρία στοιχειά: Περίοδος (Τ) ενός περιοδικού φαινομένου ονομάζεται ο χρόνος που απαιτείται για μια πλήρη επανάληψη του φαινομένου ή ο χρόνος που μεσολαβεί μεταξύ δύο διαδοχικών επαναλήψεων του φαινομένου. Η περίοδος είναι μονόμετρο μέγεθος και η μονάδα μέτρησής της είναι το 1 sec . Συχνότητα (f) ενός περιοδικού φαινομένου ονομάζεται το φυσικό μέγεθος του οποίου το μέτρο θα δίνεται από το σταθερό πηλίκο του αριθμού Ν των επαναλήψεων του φαινομένου σε κάποιο χρόνο t, προς το χρόνο αυτό.Δηλαδή:        Η συχνότητα είναι μονόμετρο μέγεθος και έχει μονάδα μέτρησης το 1 sec -1 ή 1 κύκλος/sec ή 1 Hz (Hertz) . Σχέση μεταξύ περιόδου – συχνότητας Επειδή σε χρόν

Ενέργεια Ταλάντωσης

Η ενέργεια της ταλάντωσης Ε (ή ολική ενέργεια) ενός συστήματος που εκτελεί απλή αρμονική ταλάντωση ισούται με την ενέργεια που προσφέραμε αρχικά στο σύστημα για να το θέσουμε σε κίνηση (ταλάντωση).  Η ενέργεια αυτή θα δίνεται από τη σχέση:  Από την σχέση αυτή προκύπτει ότι το πλάτος Α καθορίζεται από την ενέργεια  της ταλάντωσης, δηλαδή από την ενέργεια που προσφέραμε αρχικά στο σύστημα ώστε  να αρχίσει να ταλαντώνεται. Σε όλη την διάρκεια της ταλάντωσης η ενέργεια παραμένει  σταθερή. Η ενέργεια μιας απλής αρμονικής ταλάντωσης είναι σταθερή και ανάλογη µε το τετράγωνο του πλάτους της. Απόδειξη της παραπάνω σχέσης. Αν το σώμα βρίσκεται ακίνητο στην θέση ισορροπίας, για να μετακινηθεί σε µια άλλη θέση πρέπει να του ασκηθεί κατάλληλη εξωτερική δύναμη F εξ . Κατά την μετακίνηση αυτή θα ασκείται στο σώμα και η δύναμη επαναφοράς.  Για να μετακινηθεί το σώμα στην θέση (x) θα πρέπει το μέτρο της εξωτερικής δύναμης να είναι ίσο µε το μέτρο της δύναμης επανα

Ταλάντωση και Ελατήριο

Ελατήριο ονομάζεται ένα μηχανικό εξάρτημα το οποίο έχει την ικανότητα να αποθηκεύει μηχανική ενέργεια παραμορφώμενο προσωρινά. Συνήθως το σχήμα είναι ελικοειδές, αλλά υπάρχουν και ελατήρια σε σχήμα ράβδου, οι σούστες. Το κάθε ελατήριο μπορεί να παραμορφωθεί ως προς μία διάστασή του υπό την επίδραση δύναμης. Όταν ασκείται δύναμη σε αυτήν τη διάσταση, το ελατήριο παραμορφώνεται αποθηκεύοντας το έργο της δύναμης.   Ιδανικό ελατήριο Σε ιδανικά θεωρητικά ελατήρια ισχύει απόλυτα ο νόμος του Hook , δε χάνεται ενέργεια στο περιβάλλον και τα ελατήρια μπορούν πάντα να επιστρέψουν στο αρχικό τους μήκος. Επίσης η μάζα του ιδανικού ελατηρίου θεωρείται αμελητέα. [Στην πραγματικότητα χάνεται μικρό ποσό ενέργειας στο περιβάλλον ως θερμική ενέργεια, ενώ η παραμόρφωση μπορεί να γίνει μόνιμη. Κάθε ελατήριο έχει κάποια όρια αντοχής αν τα υπερβούν θα παραμορφωθεί ή θα σπάσει. Επιπλέον, με την επαναλαμβανόμενη χρήση το υλικό χάνει τις ιδιότητές του λόγω μηχανικής κόπωσης και αν δεν

Απλή Αρμονική Ταλάντωση (Α.Α.Τ) - Συνισταμένη Δύναμη

Από την Α΄ Λυκείου γνωρίζεις τον θεμελιώδη νόμο της Μηχανικής (2 ος νόμος του Newton), ΣF=mα . Επίσης, όπως γνωρίζεις για να υπάρχει επιτάχυνση πρέπει να υπάρχει και δύναμη που ασκείται σε κάποιο σώμα. Στην Α.Α.Τ. ισχύει α=-ω 2 x, ο συνδυασμός αυτών των δυο σχέσεων δίνει τη σχέση:  Σ F=-m ω 2 x     Από τη σχέση αυτή φαίνεται ότι όταν ένα σώμα εκτελεί απλή αρμονική ταλάντωση η συνολική δύναμη που δέχεται είναι ανάλογη με την απομάκρυνση του σώματος από την Θ.Ι. της τροχιάς του και έχει αντίθετη φορά από αυτήν. Όταν το σώμα περνά από την Θ.Ι. η συνολική δύναμη που δέχεται ισούται με μηδέν. (Για το λόγο αυτό, ονομάζεται θέση ισορροπίας της ταλάντωσης). Επίσης, στις ακραίες θέσεις της ταλάντωσης η ΣF είναι μεγίστη. Στο βίντεο δες το διάνυσμα της δύναμης επαναφοράς (είναι πάντα προς την θέση ισορροπίας).      Αν συμβολίσουμε το γινόμενο mω 2 με D (που είναι σταθερό για κάθε ταλαντωτή), δηλαδή D = mω 2 Τότε θα έχουμε τη σχέση που δίνει τ

Πως αποδεικνύουμε ότι ένα σώμα κάνει απλή αρμόνική ταλάντωση

Το είδες εδώ , τώρα λίγο πιο αναλυτικά. Σε ασκήσεις που έχουμε ένα σώμα συνδεδεμένο με ένα ελατήριο και μας ζητείται να αποδείξουμε ότι σώμα εκτελεί απλή αρμονική ταλάντωση δουλεύουμε πάντα έχοντας στο μυαλό μας ότι αρκεί να αποδείξουμε ότι σε μιά τυχαία θέση της κίνησης του σώματος η συνισταμένη δύναμη που ασκείται σε αυτό μπορεί να γραφεί στη μορφή:  Σ F=-Dx Για το σκοπό αυτό ακολουθούμε τα παρακάτω βήματα: 1. Σχεδιάζουμε το ελατήριο στη θέση φυσικού μήκους (ΘΦΜ). 2. Σχεδιάζουμε το σύστημα ελατήριο - σώμα στη θέση ισορροπίας του (Θ.Ι.) και   σχεδιάζουμε τις δυνάμεις που ασκούνται στο σώμα. (γράφουμε:)  Στη θέση ισορροπίας του συστήματος ισχύει   ΣF=0 Από τη σχέση αυτή για τη συνισταμένη των δυνάμεων στη θέση ισορροπίας προκύπτει μια συνθήκη για τις δυνάμεις που ασκούνται στο σώμα στην κατάσταση ισορροπίας. Δηλαδη:  Σ F =0  ή   mg - F ελ  =0   ή    mg = kx 1  (1) 3. Σχεδιάζουμε τις δυνάμεις που ασκούνται στο σώμα όταν το σώμα

Ταλάντωση και πλαστική κρούση

Θυμήσου την ορμή:  Για ένα σώμα μάζας m που κινείται µε ταχύτητα u η ορμή του p δίνεται από τη σχέση: p=mu Η ορμή p είναι ένα διανυσματικό μέγεθος το ο­ποίο έχει: μέτρο p = m u , διεύθυνση και φορά ίδια µε τη διεύθυνση και τη φορά της ταχύτητας u , μονάδα μέτρησης στο S.I. το 1 kg ∙ m/s (ισοδύναμη μονάδα είναι το 1 Ν∙s). Η ορμή, ως διανυσματικό μέγεθος, έχει όλες τις ιδιότητες των διανυσμάτων. Έτσι: μπορεί ν' αναλυθεί σε άξονες, δηλαδή σε συ­νιστώσες p x και p y, μεταβάλλεται αν μεταβληθεί τουλάχιστον ένα από τα στοιχεία της, δηλαδή το μέτρο της, η διεύθυνσή της ή η φορά της. Ο ρυθμός μεταβολής της ορμής (dp/dt) ισούται με την δύναμη ή τη συνισταμένη των δυνάμεων (ΣF) που ασκούνται στο σώμα. Προσοχή: Όταν στις ασκήσεις πρέπει να υπολογίσεις την μεταβολή της ορμής τότε θα υπολογίζεις την σχέση:    Δp = p τελ – p αρχ Ενώ όταν  ζητείται ο ρυθμό μεταβολής της ορμής θα υπολογίζεις τη σχέση:  dp/dt  ή Σ F.

Αρχική Φάση Στην Απλή Αρμονική Ταλάντωση (Α.Α.Τ.) - Μεθοδολογία και Ασκήσεις

Σκοπός: Η ανάπτυξη δεξιοτήτων στις τριγωνομετρικές εξισώσεις σε συνδυασμό με τα βασικά μεγέθη της απλής αρμονικής ταλάντωσης .  Απαιτούμενες γνώσεις: Τριγωνομετρικές Εξισώσεις – Εξισώσεις στην Α.Α.Τ. Βασικές παρατηρήσεις:  1. Η ταλάντωση ενός σώματος δεν έχει αρχική φάση μόνο στην κατάσταση κατά την οποία τη χρονική στιγμή t=0 το σώμα διέρχεται από τη θέση ισορροπίας του έχοντας θετική ταχύτητα. Σε οποιαδήποτε άλλη κατάσταση η ταλάντωση του σώματος έχει αρχική φάση και την υπολογίζουμε μέσω των τριγωνομετρικών εξισώσεων.  2. Η αρχική φάση μιας απλής αρμονικής με βάση το σχολικό βιβλίο παίρνει τιμές:  0≤φο<2π rad. 3. Για να προσδιορίσουμε την αρχική φάση πρέπει να γνωρίζουμε σε κάποια χρονική στιγμή (συνήθως τη στιγμή t=0) την κατάσταση που βρίσκεται ο ταλαντωτής (δηλαδή, τις αλγεβρικές τιμές τουλάχιστον δύο μεγεθών: ταχύτητα, θέση, επιτάχυνση). Απλές ασκήσεις εφαρμογής των παραπάνω. 1. Στις παρακάτω περιπτώσεις να βρεθεί η αρχική φάση της ταλάντωσης, βασική προϋπόθεση: η κίνηση είνα

Κεντρομόλος δύναμη, φυγόκεντρος δύναμη και μπογιά: Τέχνη.

Κεντρομόλος δύναμη: Όταν ένα σώμα εκτελεί κυκλική κίνηση, δηλαδή περιστρέφεται διαγράφοντας κύκλο γύρω από ένα σταθερό σημείο στον χώρο, τότε στο σώμα ασκείται δύναμη η οποία έχει φορά προς το κέντρο του κύκλου αυτού που διαγράφει η τροχιά του. Αυτή η δύναμη ονομάζεται κεντρομόλος. Η κεντρομόλος δύναμη είναι η συνιστώσα της συνολικής δύναμης που ασκείται στο σώμα κατά τη διεύθυνση που ορίζει κάθε στιγμή η θέση του με το κέντρο της κυκλικής τροχιάς του, έχει κατεύθυνση (φορά) προς το κέντρο αυτό και είναι κάθε χρονική στιγμή κάθετη στην ταχύτητα του σώματος. Φυγόκεντρος δύναμη: Η φυγόκεντρος δύναμη είναι φαινόμενη (ψευδής) δύναμη που «αισθάνεται» ένα σώμα το οποίο εκτελεί κυκλική κίνηση, η οποία μοιάζει να το σπρώχνει (ή να το τραβά) να φύγει από την κυκλική του τροχιά, προς τα έξω. Κάθε σώμα που κινείται σε μη επιταχυνόμενο σύστημα αναφοράς τείνει να διατηρήσει την ταχύτητα προς την κατεύθυνση που έχει κάθε στιγμή. Η εξανάγκαση ενός σώματος να κινείται κυκλικά και όχι ευθύγρ

Θέματα πανελληνίων εξετάσεων: Ταλαντώσεις

Τα θέματα των πανελληνίων μπορείς να τα δεις κι εδώ , αλλά σ’ αυτό το αρχείο θα βρεις όλα τα θέματα από το 2001 ως το 2012 τα οποία αναφέρονται στις ταλαντώσεις, αποκλειστικά,  μηχανικές, ηλεκτρικές. Καλή δουλειά σου εύχομαι. 

Μαγνήτες πηνία και ηλεκτρικό ρεύμα.

Ο Michael Faraday δημιούργησε την πρώτη ηλεκτρική γεννήτρια το 1831 χρησιμοποιώντας ένα πηνίο και ένα μόνιμο μαγνήτη. Όταν ο μαγνήτης άλλαζε θέση σε σχέση με το πηνίο, αναπτυσσόταν ηλεκτρικό ρεύμα. Ένα παρόμοιο πείραμα μπορεί να πραγματοποιηθεί με ένα σωλήνα χαλκού και έναν μαγνήτη. Παρά το γεγονός ότι ο χαλκός δεν είναι μαγνητικό υλικό, κατά την πτώση του μαγνήτη μέσα από τον σωλήνα δημιουργείται ένα μαγνητικό πεδίο με αποτέλεσμα την ανάπτυξη ηλεκτρικού ρεύματος. Το ρεύμα με τη σειρά του δημιουργεί μαγνητικό πεδίο το οποίο αντιτίθεται στην κίνηση του μαγνήτη καθυστερώντας την πτώση του. Η παραπάνω λειτουργία δημιουργεί ηλεκτρική ενέργεια η οποία στη συνέχεια διαχέεται στην ατμόσφαιρα με τη μορφή θερμότητας. Η ίδια βασική αρχή χρησιμοποιείται για την παραγωγή ηλεκτρικής ενέργειας σε όλο τον κόσμο. Απλό. Δεν είχε ιδέα τι θα ακολουθούσε .  Source:  1veritasium