Μετάβαση στο κύριο περιεχόμενο

#24 Links: Για διάβασμα.


Αν το Σύμπαν αποτελείτο μόνο από δύο σημειακές μάζες – ο Ήλιος και ένας πλανήτης – η τροχιά του πλανήτη θα ήταν μία τέλεια κλειστή έλλειψη, που επέστρεφε στην αρχική του θέση με κάθε ταξίδι του γύρω από τον Ήλιο Αλλά σε ένα σύμπαν που διέπεται από την νευτώνεια βαρύτητα, με μια πληθώρα σωμάτων με μάζα στο ηλιακό μας σύστημα, αυτή η έλλειψη θα έχει μια μετάπτωση, δηλαδή μια ελαφρά περιστροφή στην τροχιά του. Στα μέσα της δεκαετίας του 1800, οι τροχιακές αποκλίσεις του Ουρανού από τις μαθηματικές προβλέψεις της κίνησης του, οδήγησε στην ανακάλυψη του Ποσειδώνα, καθώς η βαρυτική επίδραση του αντιπροσώπευε την μεταβολή της τροχιάς του Ουρανού.




Το ερώτημα, το οποίο διατυπώνει ο Latour στην εισαγωγή του Science In Action είναι το εξής: 
Από ποιό σημείο μπορεί να ξεκινήσει κανείς μια μελέτη της επιστήμης και της τεχνολογίας; 
Οι δύο διαφορετικές εικόνες που μπορούμε να έχουμε για την επιστήμη, οι οποίες αντιστοιχούνται από τον Latour στα δύο πρόσωπα του ίδιου ανθρώπου, εξαρτώνται από το σημείο, στο οποίο αποφασίζουμε να την μελετήσουμε. Η πρώτη εικόνα μας δείχνει την “ολοκληρωμένη επιστήμη” (ready made science), στην οποία η γνώση είναι παγιωμένη, είναι ένα “μαύρο κουτί” (black box).
Η δεύτερη εικόνα μας παρουσιάζει την “επιστήμη εν τω γίγνεσθαι” (science in the making) και μας μεταφέρει στις περιόδους των ανοιχτών επιστημονικών διαμαχών, όπου η γνώση βρίσκεται στη διαδικασία παραγωγής της. Ο Latour υποστηρίζει ότι η μελέτη της επιστήμης και της τεχνολογίας, της τεχνοεπιστήμης όπως ο ίδιος προτιμά, πρέπει να ξεκινά από το σημείο εκείνο, στο οποίο η γνώση βρίσκεται στην διαδικασία γέννησής της, δηλαδή στις περιόδους των επιστημονικών διαμαχών. Στις περιόδους αυτές δεν μπορούμε να διακρίνουμε ανάμεσα σε πλαίσιο και περιεχόμενο της επιστήμης διότι, όπως θα γίνει σαφές παρακάτω, αυτά διαμορφώνονται πλήρως μόνο όταν ολοκληρωθεί η διαμάχη. Για τον λόγο αυτό μάλιστα δεν μας χρειάζεται κατά τον Latour πρότερη γνώση, ως προς το τι συνιστά γνώση. Αντί να προσπαθούμε να αναλύσουμε τα τελικά προιόντα της επιστήμης και της τεχνολογίας, θα ακολουθούμε τους επιστήμονες στην εν τόπω και χρόνω διαδικασία παραγωγής γνώσης, παρακολουθώντας τις προσπάθειές τους να κλείσουν μια διαμάχη και να ανοίξουν μια καινούργια και θα εξετάζουμε τις ερμηνείες που προσφέρουν σχετικά με την ολοκλήρωση των διαμαχών. Αυτά συνιστούν για τον Latour τον πρώτο κανόνα μεθόδου για μια μελέτη της επιστήμης και τεχνολογίας, ο οποίος παρέχει τα εχέγγυα για την αξιοποίηση του εμπειρικού υλικού που έχουμε στη διάθεσή μας, καθώς και των μεθόδων, τις οποίες έχουν αναπτύξει οι μελετητές της επιστήμης, τεχνολογίας και κοινωνίας.


Ήταν στις 4 Φεβρουαρίου του 1912 όταν ο FranzReichelt σκαρφάλωσε στην κορυφή του Πύργου του Άιφελ φορώντας μια στολή πτήσης δικής του έμπνευσης. Στις 8:22 το πρωί ο Reichelt βρισκόταν στην κορυφή του Πύργου του Άιφελ. Φόρεσε τη στολή του και πήδηξε στο κενό με αποτέλεσμα να χάσει τη ζωή του.


Και φαίνεται από το διάστημα.



It now looks like Morocco will put that natural resource to good use by building the world’s largest solar plant near a town called Ouarzazate on the desert’s outskirts. The first stage, Noor 1, that launched this week, covers 6,178 acres, almost 10 square miles, and already produces 160 megawatts (MW) at its peak, enough energy for 650,000 locals.


Μπορεί να στείλαμε ρομποτάκια στον Άρη αλλά ακόμη οι Φυσικοί δεν έχουν καταφέρει να εξηγήσουν την κίνηση του ποδηλάτου. Το προσπαθούμε όμως.


Despite our work and that of others in the field, there is still much to be learned about how humans ride and balance bicycles. Most research, including ours, has been limited to straight line riding, which only makes up a fraction of a typical bicycle ride.
Our work reveals measurable differences between riders of different skill levels. But their meaning is unclear. Are the differences linked to a higher risk of crashing for the novice riders? Or do the differences simply reflect a different style of control that gets fine-tuned through hours and hours of training rides?
Ideally, we would like to identify the measurements that quantify the balance performance, control strategy, and fall risk of a rider in the real world.
With such measurements, we could identify riders at high risk of falling, explore the extent to which bicycle design can reduce fall risk and increase balance performance, and develop the mathematical equations that describe riders of different skill levels.



Σοβαρά τώρα, μη πάρετε τη λίστα κυριολεκτικά, για παράδειγμα μπορείτε να ξεκινήσετε από το δεύτερο. Δεν χρειάζεται να μελετήσετε το πρώτο βιβλίο, σοβαρά. 

1. The Bible (public libraryfree ebook), to learn that it’s easier to be told by others what to think and believe than it is to think for yourself
2. The System of the World (public libraryfree ebook) by Isaac Newton, to learn that the universe is a knowable place
3. On the Origin of Species (public libraryfree ebook) by Charles Darwin, to learn of our kinship with all other life on Earth
4. Gulliver’s Travels (public libraryfree ebook) by Jonathan Swift, to learn, among other satirical lessons, that most of the time humans are Yahoos
5. The Age of Reason (public libraryfree ebook) by Thomas Paine, to learn how the power of rational thought is the primary source of freedom in the world
6. The Wealth of Nations (public libraryfree ebook) by Adam Smith, to learn that capitalism is an economy of greed, a force of nature unto itself
7. The Art of War (public libraryfree ebook) by Sun Tzu, to learn that the act of killing fellow humans can be raised to an art
8. The Prince (public libraryfree ebook) by Machiavelli, to learn that people not in power will do all they can to acquire it, and people in power will do all they can to keep it

If you read all of the above works you will glean profound insight into most of what has driven the history of the western world.

Ένας πυρηνικός διαστημικός κινητήρας πραγματικά θα μπορούσε να αλλάξει τα δεδομένα όσον αφορά στην εξερεύνηση του Ηλιακού Συστήματος, αυξάνοντας τόσο τις ταχύτητες όσο και τις εμβέλειες των διαστημοπλοίων και ανοίγοντας τον δρόμο για επανδρωμένες αποστολές σε μακρινούς προορισμούς. Η Rosatom εργάζεται πάνω στην ανάπτυξη ενός κινητήρα κλάσης μεγαβάτ για διαστημόπλοια. «Τα σχέδια πάνω στα οποία δουλεύουμε θα επιτρέψουν στην ανθρωπότητα να φτιάξει διαστημόπλοια που θα αντιμετωπίζουν όλες τις διαστημικές προκλήσεις του 21ου αιώνα, όπως η μεταφορά φορτίων, η απομάκρυνση διαστημικών σκουπιδιών, η αποφυγή συγκρούσεων με αστεροειδείς κ.α» αναφέρεται σχετικά στην ιστοσελίδα της.


Αυτά που λέτε, καλή εβδομάδα να έχετε.

Σχόλια

Δημοφιλείς αναρτήσεις από αυτό το ιστολόγιο

Απλή Αρμονική Ταλάντωση (Α.Α.Τ) Εξισώσεις κίνησης

Περιοδικά ονομάζονται τα φαινόμενα που επαναλαμβάνονται με τον ίδιο τρόπο σε ίσα χρονικά διαστήματα. Π.χ. ομαλή κυκλική κίνηση, κίνηση εκκρεμούς, περιστροφή γης γύρω από τον ήλιο κ.ά. (Σκέψου μερικά ακόμη …) Στοιχεία περιοδικής κίνησης Κάθε περιοδική κίνηση χαρακτηρίζεται από τα παρακάτω τρία στοιχειά: Περίοδος (Τ) ενός περιοδικού φαινομένου ονομάζεται ο χρόνος που απαιτείται για μια πλήρη επανάληψη του φαινομένου ή ο χρόνος που μεσολαβεί μεταξύ δύο διαδοχικών επαναλήψεων του φαινομένου. Η περίοδος είναι μονόμετρο μέγεθος και η μονάδα μέτρησής της είναι το 1 sec . Συχνότητα (f) ενός περιοδικού φαινομένου ονομάζεται το φυσικό μέγεθος του οποίου το μέτρο θα δίνεται από το σταθερό πηλίκο του αριθμού Ν των επαναλήψεων του φαινομένου σε κάποιο χρόνο t, προς το χρόνο αυτό.Δηλαδή:        Η συχνότητα είναι μονόμετρο μέγεθος και έχει μονάδα μέτρησης το 1 sec -1 ή 1 κύκλος/sec ή 1 Hz (Hertz) . Σχέση μεταξύ περιόδου – συχνό...

Ενέργεια Ταλάντωσης

Η ενέργεια της ταλάντωσης Ε (ή ολική ενέργεια) ενός συστήματος που εκτελεί απλή αρμονική ταλάντωση ισούται με την ενέργεια που προσφέραμε αρχικά στο σύστημα για να το θέσουμε σε κίνηση (ταλάντωση).  Η ενέργεια αυτή θα δίνεται από τη σχέση:  Από την σχέση αυτή προκύπτει ότι το πλάτος Α καθορίζεται από την ενέργεια  της ταλάντωσης, δηλαδή από την ενέργεια που προσφέραμε αρχικά στο σύστημα ώστε  να αρχίσει να ταλαντώνεται. Σε όλη την διάρκεια της ταλάντωσης η ενέργεια παραμένει  σταθερή. Η ενέργεια μιας απλής αρμονικής ταλάντωσης είναι σταθερή και ανάλογη µε το τετράγωνο του πλάτους της. Απόδειξη της παραπάνω σχέσης. Αν το σώμα βρίσκεται ακίνητο στην θέση ισορροπίας, για να μετακινηθεί σε µια άλλη θέση πρέπει να του ασκηθεί κατάλληλη εξωτερική δύναμη F εξ . Κατά την μετακίνηση αυτή θα ασκείται στο σώμα και η δύναμη επαναφοράς.  Για να μετακινηθεί το σώμα στην θέση (x) θα πρέπει το μέτρο της εξωτερικής δύναμης να είναι ίσο ...

Ταλάντωση και Ελατήριο

Ελατήριο ονομάζεται ένα μηχανικό εξάρτημα το οποίο έχει την ικανότητα να αποθηκεύει μηχανική ενέργεια παραμορφώμενο προσωρινά. Συνήθως το σχήμα είναι ελικοειδές, αλλά υπάρχουν και ελατήρια σε σχήμα ράβδου, οι σούστες. Το κάθε ελατήριο μπορεί να παραμορφωθεί ως προς μία διάστασή του υπό την επίδραση δύναμης. Όταν ασκείται δύναμη σε αυτήν τη διάσταση, το ελατήριο παραμορφώνεται αποθηκεύοντας το έργο της δύναμης.   Ιδανικό ελατήριο Σε ιδανικά θεωρητικά ελατήρια ισχύει απόλυτα ο νόμος του Hook , δε χάνεται ενέργεια στο περιβάλλον και τα ελατήρια μπορούν πάντα να επιστρέψουν στο αρχικό τους μήκος. Επίσης η μάζα του ιδανικού ελατηρίου θεωρείται αμελητέα. [Στην πραγματικότητα χάνεται μικρό ποσό ενέργειας στο περιβάλλον ως θερμική ενέργεια, ενώ η παραμόρφωση μπορεί να γίνει μόνιμη. Κάθε ελατήριο έχει κάποια όρια αντοχής αν τα υπερβούν θα παραμορφωθεί ή θα σπάσει. Επιπλέον, με την επαναλαμβανόμενη χρήση το υλικό χάνει τις ιδιότητές του λόγω μηχανικής κόπωσης και αν ...

Απλή Αρμονική Ταλάντωση (Α.Α.Τ) - Συνισταμένη Δύναμη

Από την Α΄ Λυκείου γνωρίζεις τον θεμελιώδη νόμο της Μηχανικής (2 ος νόμος του Newton), ΣF=mα . Επίσης, όπως γνωρίζεις για να υπάρχει επιτάχυνση πρέπει να υπάρχει και δύναμη που ασκείται σε κάποιο σώμα. Στην Α.Α.Τ. ισχύει α=-ω 2 x, ο συνδυασμός αυτών των δυο σχέσεων δίνει τη σχέση:  Σ F=-m ω 2 x     Από τη σχέση αυτή φαίνεται ότι όταν ένα σώμα εκτελεί απλή αρμονική ταλάντωση η συνολική δύναμη που δέχεται είναι ανάλογη με την απομάκρυνση του σώματος από την Θ.Ι. της τροχιάς του και έχει αντίθετη φορά από αυτήν. Όταν το σώμα περνά από την Θ.Ι. η συνολική δύναμη που δέχεται ισούται με μηδέν. (Για το λόγο αυτό, ονομάζεται θέση ισορροπίας της ταλάντωσης). Επίσης, στις ακραίες θέσεις της ταλάντωσης η ΣF είναι μεγίστη. Στο βίντεο δες το διάνυσμα της δύναμης επαναφοράς (είναι πάντα προς την θέση ισορροπίας).      Αν συμβολίσουμε το γινόμενο mω 2 με D (που είναι σταθερό για κάθε ταλαντωτή), δηλαδή D = mω 2 Τότε θ...

Πως αποδεικνύουμε ότι ένα σώμα κάνει απλή αρμόνική ταλάντωση

Το είδες εδώ , τώρα λίγο πιο αναλυτικά. Σε ασκήσεις που έχουμε ένα σώμα συνδεδεμένο με ένα ελατήριο και μας ζητείται να αποδείξουμε ότι σώμα εκτελεί απλή αρμονική ταλάντωση δουλεύουμε πάντα έχοντας στο μυαλό μας ότι αρκεί να αποδείξουμε ότι σε μιά τυχαία θέση της κίνησης του σώματος η συνισταμένη δύναμη που ασκείται σε αυτό μπορεί να γραφεί στη μορφή:  Σ F=-Dx Για το σκοπό αυτό ακολουθούμε τα παρακάτω βήματα: 1. Σχεδιάζουμε το ελατήριο στη θέση φυσικού μήκους (ΘΦΜ). 2. Σχεδιάζουμε το σύστημα ελατήριο - σώμα στη θέση ισορροπίας του (Θ.Ι.) και   σχεδιάζουμε τις δυνάμεις που ασκούνται στο σώμα. (γράφουμε:)  Στη θέση ισορροπίας του συστήματος ισχύει   ΣF=0 Από τη σχέση αυτή για τη συνισταμένη των δυνάμεων στη θέση ισορροπίας προκύπτει μια συνθήκη για τις δυνάμεις που ασκούνται στο σώμα στην κατάσταση ισορροπίας. Δηλαδη:  Σ F =0  ή   mg - F ελ  =0   ή    mg = kx 1  (1) ...

Ταλάντωση και πλαστική κρούση

Θυμήσου την ορμή:  Για ένα σώμα μάζας m που κινείται µε ταχύτητα u η ορμή του p δίνεται από τη σχέση: p=mu Η ορμή p είναι ένα διανυσματικό μέγεθος το ο­ποίο έχει: μέτρο p = m u , διεύθυνση και φορά ίδια µε τη διεύθυνση και τη φορά της ταχύτητας u , μονάδα μέτρησης στο S.I. το 1 kg ∙ m/s (ισοδύναμη μονάδα είναι το 1 Ν∙s). Η ορμή, ως διανυσματικό μέγεθος, έχει όλες τις ιδιότητες των διανυσμάτων. Έτσι: μπορεί ν' αναλυθεί σε άξονες, δηλαδή σε συ­νιστώσες p x και p y, μεταβάλλεται αν μεταβληθεί τουλάχιστον ένα από τα στοιχεία της, δηλαδή το μέτρο της, η διεύθυνσή της ή η φορά της. Ο ρυθμός μεταβολής της ορμής (dp/dt) ισούται με την δύναμη ή τη συνισταμένη των δυνάμεων (ΣF) που ασκούνται στο σώμα. Προσοχή: Όταν στις ασκήσεις πρέπει να υπολογίσεις την μεταβολή της ορμής τότε θα υπολογίζεις την σχέση:    Δp = p τελ – p αρχ Ενώ όταν  ζητείται ο ρυθμό μεταβολής της ορμής θα υπολογίζεις τη σχέση:...

Αρχική Φάση Στην Απλή Αρμονική Ταλάντωση (Α.Α.Τ.) - Μεθοδολογία και Ασκήσεις

Σκοπός: Η ανάπτυξη δεξιοτήτων στις τριγωνομετρικές εξισώσεις σε συνδυασμό με τα βασικά μεγέθη της απλής αρμονικής ταλάντωσης .  Απαιτούμενες γνώσεις: Τριγωνομετρικές Εξισώσεις – Εξισώσεις στην Α.Α.Τ. Βασικές παρατηρήσεις:  1. Η ταλάντωση ενός σώματος δεν έχει αρχική φάση μόνο στην κατάσταση κατά την οποία τη χρονική στιγμή t=0 το σώμα διέρχεται από τη θέση ισορροπίας του έχοντας θετική ταχύτητα. Σε οποιαδήποτε άλλη κατάσταση η ταλάντωση του σώματος έχει αρχική φάση και την υπολογίζουμε μέσω των τριγωνομετρικών εξισώσεων.  2. Η αρχική φάση μιας απλής αρμονικής με βάση το σχολικό βιβλίο παίρνει τιμές:  0≤φο<2π rad. 3. Για να προσδιορίσουμε την αρχική φάση πρέπει να γνωρίζουμε σε κάποια χρονική στιγμή (συνήθως τη στιγμή t=0) την κατάσταση που βρίσκεται ο ταλαντωτής (δηλαδή, τις αλγεβρικές τιμές τουλάχιστον δύο μεγεθών: ταχύτητα, θέση, επιτάχυνση). Απλές ασκήσεις εφαρμογής των παραπάνω. 1. Στις παρακάτω περιπτώσεις να βρεθεί η αρχική φάση της ταλάν...

Κεντρομόλος δύναμη, φυγόκεντρος δύναμη και μπογιά: Τέχνη.

Κεντρομόλος δύναμη: Όταν ένα σώμα εκτελεί κυκλική κίνηση, δηλαδή περιστρέφεται διαγράφοντας κύκλο γύρω από ένα σταθερό σημείο στον χώρο, τότε στο σώμα ασκείται δύναμη η οποία έχει φορά προς το κέντρο του κύκλου αυτού που διαγράφει η τροχιά του. Αυτή η δύναμη ονομάζεται κεντρομόλος. Η κεντρομόλος δύναμη είναι η συνιστώσα της συνολικής δύναμης που ασκείται στο σώμα κατά τη διεύθυνση που ορίζει κάθε στιγμή η θέση του με το κέντρο της κυκλικής τροχιάς του, έχει κατεύθυνση (φορά) προς το κέντρο αυτό και είναι κάθε χρονική στιγμή κάθετη στην ταχύτητα του σώματος. Φυγόκεντρος δύναμη: Η φυγόκεντρος δύναμη είναι φαινόμενη (ψευδής) δύναμη που «αισθάνεται» ένα σώμα το οποίο εκτελεί κυκλική κίνηση, η οποία μοιάζει να το σπρώχνει (ή να το τραβά) να φύγει από την κυκλική του τροχιά, προς τα έξω. Κάθε σώμα που κινείται σε μη επιταχυνόμενο σύστημα αναφοράς τείνει να διατηρήσει την ταχύτητα προς την κατεύθυνση που έχει κάθε στιγμή. Η εξανάγκαση ενός σώματος να κινείται κυκλικά και όχι ευθύγρ...

Θέματα πανελληνίων εξετάσεων: Ταλαντώσεις

Τα θέματα των πανελληνίων μπορείς να τα δεις κι εδώ , αλλά σ’ αυτό το αρχείο θα βρεις όλα τα θέματα από το 2001 ως το 2012 τα οποία αναφέρονται στις ταλαντώσεις, αποκλειστικά,  μηχανικές, ηλεκτρικές. Καλή δουλειά σου εύχομαι. 

Η διαίρεση με το μηδέν και μια απόδειξη ότι ο περιπτεράς της γειτονιάς σας είναι καρότο.

Ένα πρόβλημα στα μαθηματικά είναι οι πράξεις με το μηδέν και ιδιαίτερα η διαίρεση με παρονομαστή το μηδέν. Γύρω από αυτό το πρόβλημα (ή την απροσδιοριστία αν θέλεις) έχουν γραφτεί διάφορα, πολλά από τα οποία ήταν μπούρδες, περί αποδείξεως του θεού κι άλλα τέτοια. Το παρακάτω κείμενο το οποίο το άντλησα από το blog Μαθη...μαγικα σου εξηγεί το εξής: πως μπορείς να αποδείξεις το οτιδήποτε κάνοντας μια λάθος μαθηματική υπόθεση. Για δες:  «Τι είναι το μηδέν, Μπαμπά ;» «Ο αριθμός των φτερωτών ελεφάντων που στέκονται δίπλα σου.» « Οι ροζ ή οι άσπροι;»    Το μηδέν δεν πειθαρχεί σε όλους τους κανόνες των αριθμών.O Ινδός μαθηματικός  Βραχμαγκούπτα παρότι ήταν ο πρώτος που ασχολήθηκε μαζί του ενδελεχώς, ομολογουμένως δεν κατάφερε να χειριστεί την διαίρεση. Την διαίρεσή ενός αριθμού με το μηδέν.Ο μεταγενέστερος του, επίσης Ινδός μαθηματικός Μπασκάρα γνώριζε ότι όσο μικρότερος είναι ο διαιρέτης σε μια διαίρεση τόσο  μεγαλύτερο είναι το πη...