Μετάβαση στο κύριο περιεχόμενο

Στοιχεία που αξίζει να ξέρεις για τη Δίκη του Γαλιλαίου.

Η δίκη του Γαλιλαίου το 1633 αποτελεί την τελική έκφραση μιας πορείας που άρχισε πολύ πριν, οι πρώτες αντιδράσεις από θεολόγους και φιλοσόφους για τις έρευνες και τις παρατηρήσεις του Γαλιλαίου θα ξεκινήσουν στις αρχές του 1600. Ο μονάχος Caccini, μετά από κηρύγματα και επιστολές κατά του Γαλιλαίου, καταθέτει στην Ιερά Εξέταση, κατηγορώντας τον  ως ύποπτο αιρετικής συμπεριφοράς με αφορμή τα γράμματα του στον Castelli, με τα οποία έθιγε θέματα από το βιβλίο του για τις ηλιακές κηλίδες, συγκεκριμένα καταγγέλλει τον Γαλιλαίο για την πίστη του ότι η γη κινείται γύρω από τον Ήλιο. Με αφορμή την καταγγελία του Cassini η Ιερά Εξέταση μελετά τα γράμματα (1615) και αποφασίζει ότι η άποψη για τον ακίνητο ήλιο είναι ανόητη και άκρως αιρετική, στη συνεχεία ο Πάπας αναθέτει στον καρδινάλιο Bellarmine, να ζητήσει από τον Γαλιλαίο να εγκαταλείψει τις απόψεις του περί του ηλιοκεντρικού συστήματος, σε αντίθετη περίπτωση θα του δινόταν δικαστική εντολή η οποία θα του απαγόρευε την διδασκαλία, την υπεράσπιση και την συζήτηση των ιδεών του, αν η άρνηση συνεχιζόταν θα έπρεπε να φυλακιστεί.  

Ο Bellarmine κάλεσε τον Γαλιλαίο στο σπίτι του αλλά αυτό που συνέβη στην πραγματικότητα είναι το «θολό» κομμάτι της ιστορίας. Από τα πρακτικά της συνεδρίασης της Ιεράς Εξέτασης τον Μάρτιο του 1616 μαθαίνουμε ότι ο Bellarmine ενημέρωσε τον Γαλιλαίο ότι έπρεπε να εγκαταλείψει τις απόψεις του κι αυτός συμφώνησε, άρα δεν έγινε πράξη το δεύτερο κομμάτι τις απόφασης, δηλαδή να του απαγορευτεί η διδασκαλία, και η υπεράσπιση των απόψεων του. Ένα δεύτερο τεκμήριο για την συνάντηση το οποίο είναι ανυπόγραφο και φέρεται να είναι από τα πρακτικά τις συνεδρίασης αναφέρει πως στον Γαλιλαίο εκφωνήθηκε το δεύτερο μέρος της απόφασης. Συνεπώς με τα παραπάνω τεκμήρια δεν είναι ξεκάθαρο αν τελικά είχε απαγορευτεί η διακίνηση των ιδεών του Γαλιλαίου από τον ίδιο. 
Τα επόμενα χρόνια θα υπάρξει μια σχετική ηρεμία όπου τελικά ο Γαλιλαίος θα επιστρέψει στο προσκήνιο το 1632 με την κυκλοφορία του έργου του «Διάλογος περί των δυο κυριότερων κοσμικών συστημάτων, του πτολεμαϊκού και του κοπερνικικού» στο οποίο επιμένει στην κοπερνίκεια θεωρία για την κίνηση της γης. Ο νέος Πάπας γίνεται έξαλλος, διότι ο Γαλιλαίος του είχε αποκρύψει τα γεγονότα, στις συναντήσεις που είχαν το 1624, και λόγω του ανυπόγραφου τεκμηρίου φαίνεται να παραβιάζει τις απαγορεύσεις του 1616. 

Στις 12 Απριλίου του 1633 ο Γαλιλαίος παρουσιάστηκε για πρώτη φορά στην Ιερά Εξέταση, στη δίκη κατηγορείται για την δημοσίευση του βιβλίου του, η οποία παραβιάζει την απαγόρευση του 1616. Ο Πάπας ορίζει τρεις συμβούλους ώστε να εξετάσουν το έργο του «Διάλογος…». Οι τρεις εκθέσεις ήταν εναντίον του υποστηρίζοντας ότι ο Γαλιλαίος πιστεύει στην κίνηση της Γης. Το δικαστήριο τον κατηγορεί ότι υποστηρίζει και αναπαράγει την ηλιοκεντρική θεωρία και ότι η γη δεν είναι το κέντρο του κόσμου. Επίσης κατηγορείται ότι δίδασκε και αλληλογραφούσε τις θεωρίες του καταπατώντας την απαγόρευση. Κατηγορείται ότι ερμήνευε την Αγία Γραφή ανάλογα με τα δικά του νοήματα τα οποία έρχονται σε αντίθεση με τις Ιερές Γραφές. Άλλη μια αίτια για την καταδίκη είναι η απόκρυψη της απόφασης του 1616, στην επιτροπή λογοκρισίας της εκκλησιάς με αποτέλεσμα να λάβει την άδεια έκδοσης του βιβλίου του. Τελικά το 1633 καταδικάστηκε ένοχος λόγω της «σοβαρότατης υπόνοιας» πως αυτά που πιστεύει είναι αιρετικά.

Κατά την απολογία του ο Γαλιλαίος προσπαθεί να δώσει την εντύπωση του υπάκουου πιστού, αναφέρεται στην «θολή» συνάντηση του με τον Bellarmine υποστηρίζοντας πως του ανακοινώθηκε – χωρίς γραπτή εντολή – να μην υπερασπίζεται τις απόψεις του Κοπέρνικου.  Επίσης εστιάζει στο πιστοποιητικό το οποίο ο ίδιος ζήτησε από τον Bellarmine, μετά από τις φήμες που άκουσε για τις απαγορεύσεις. Το πιστοποιητικό το οποίο κατέθεσε στη δίκη αναφέρεται μόνο στην υποστήριξη και την υπεράσπιση των ιδεών του και δεν κάνει καμία αναφορά στην διδασκαλία, η στην αναπαραγωγή των ιδεών του με οποιονδήποτε τρόπο. Όσο αναφορά στην έκδοση του βιβλίου του ανάφερε ότι παρέδωσε το βιβλίο στη λογοκρισία της εκκλησίας χωρίς να κρίνει απαραίτητο να ενημερώσει για τις απαγορεύσεις του 1616, αφού θεωρεί πως στο βιβλίο ούτε υποστήριζε ούτε υπερασπιζόταν την άποψη της κίνησης της γης και της ακινησίας του Ήλιου. Τέλος, σε μια ύστατη προσπάθεια να «ελαφρύνει» την ποινή της καταδίκης του αποκηρύττει τις ιδέες του και καταθέτει ως αναμφισβήτητα λανθασμένη την κοπερνίκεια θεωρία.

Ο Γαλιλαίος δεν υπήρξε ποτέ πολέμιος της εκκλησίας και ούτε υπάρχουν ιστορικά ντοκουμέντα τα οποία διηγούνται της αντιθρησκευτικές του απόψεις, άλλωστε ο ίδιος προσπαθούσε να συμβιβάσει τις απόψεις της Βίβλου με τα νέα δεδομένα για τη φύση. Από την άλλη πλευρά ο Γαλιλαίος ως δημιουργός της μετρήσιμης επιστήμης κατάφερε να παρατηρήσει τις κινήσεις των πλανητών, των κομητών, τις κηλίδες του Ήλιου και να έχει στα χεριά του μετρήσιμα μεγέθη, επιστημονικά δεδομένα για τις ιδέες του. Είχε πειστεί, κι αυτό εξέφραζαν τα έργα του, για την ηλιοκεντρική θεωρία του Κοπέρνικου. 

Από τα πρώτα γεγονότα στις αρχές του 1600 ο Γαλιλαίος ήξερε τις αντιδράσεις που προκαλούσαν τα έργα του, μετά τις απαγορεύσεις του 1616 μέχρι και την έκδοση του βιβλίου του  «Διάλογος…» προσπαθούσε να κερδίσει την εύνοια της Εκκλησίας. Στην απολογία του προσπάθησε να υποβαθμίσει την αντιδικία μειώνοντας την αξία του έργου του, με σκοπό την μικρότερη δυνατή ποινή. Άλλωστε το 1633 ο Γαλιλαίος ήταν σε μεγάλη ηλικία και με την υγεία του σε αστάθεια δεν είχε το σθένος και το κουράγιο να υπερασπιστεί τις απόψεις του. 

Εν κατακλείδι ο Γαλιλαίος ήταν θρησκευόμενος επιστήμονας ο οποίος προσπαθούσε σε όλη τη διάρκεια της ζωής του να καθιερώσει τις ιδέες του για το σύμπαν και βρέθηκε, στη δύση της ζωής του, απολογούμενος απέναντι στο σκληρότερο δικαστήριο της κάθε εποχής, την Ιερά Εξέταση. Βρέθηκε να επιχειρηματολογεί απέναντι στο πτολεμαϊκό σύστημα το οποίο είχε ιστορία 1500 χρόνων και ήταν καθολικά αποδεκτό από φιλοσόφους, μοναχούς, ακόμη και από τους «επιστήμονες» της εποχής του. Συνεπώς η στάση του ήταν καθόλα ανθρώπινη και φυσιολογική, χωρίς ίχνη ηρωισμού και τάσεις αυτοθυσίας προκειμένου να καθιερώσει τις ιδέες του. Όσο για τη γνωστή φράση, που υποτίθεται ότι αναφώνησε στο τέλος της δίκης: «…κι όμως κινείται», αποτελεί έναν ακίνδυνο επιστημονικό μύθο


Βιβλιογραφικές Αναφορές
  • Brooke, J. (2008). Επιστήμη και Θρησκεία, Ηράκλειο. 
  • Γαβρόγλου, Κ. (2003). Ιστορία της φυσικής και της χημείας. Τόμος A', Πάτρα.
  • Οι Μεγάλες Δίκες. (2011). Η δίκη του Γαλιλαίου, Αθήνα.



Σχόλια

Δημοφιλείς αναρτήσεις από αυτό το ιστολόγιο

Απλή Αρμονική Ταλάντωση (Α.Α.Τ) Εξισώσεις κίνησης

Περιοδικά ονομάζονται τα φαινόμενα που επαναλαμβάνονται με τον ίδιο τρόπο σε ίσα χρονικά διαστήματα. Π.χ. ομαλή κυκλική κίνηση, κίνηση εκκρεμούς, περιστροφή γης γύρω από τον ήλιο κ.ά.
(Σκέψου μερικά ακόμη…)
Στοιχεία περιοδικής κίνησης Κάθε περιοδική κίνηση χαρακτηρίζεται από τα παρακάτω τρία στοιχειά:
Περίοδος (Τ) ενός περιοδικού φαινομένου ονομάζεται ο χρόνος που απαιτείται για μια πλήρη επανάληψη του φαινομένου ή ο χρόνος που μεσολαβεί μεταξύ δύο διαδοχικών επαναλήψεων του φαινομένου.
Η περίοδος είναι μονόμετρο μέγεθος και η μονάδα μέτρησής της είναι το 1 sec.

Συχνότητα (f) ενός περιοδικού φαινομένου ονομάζεται το φυσικό μέγεθος του οποίου το μέτρο θα δίνεται από το σταθερό πηλίκο του αριθμού Ν των επαναλήψεων του φαινομένου σε κάποιο χρόνο t, προς το χρόνο αυτό.Δηλαδή: Η συχνότητα είναι μονόμετρο μέγεθος και έχει μονάδα μέτρησης το 1 sec-1 ή 1 κύκλος/sec ή 1 Hz (Hertz).



Σχέση μεταξύ περιόδου – συχνότητας Επειδή σε χρόνο t ίσο με μια περίοδο Τ έχουμε μια επανάληψη (Ν=1) του φαινομένου έχουμ…

Ενέργεια Ταλάντωσης

Η ενέργεια της ταλάντωσης Ε (ή ολική ενέργεια) ενός συστήματος που εκτελεί απλή αρμονική ταλάντωση ισούται με την ενέργεια που προσφέραμε αρχικά στο σύστημα για να το θέσουμε σε κίνηση (ταλάντωση). 




Η ενέργεια αυτή θα δίνεται από τη σχέση:  Από την σχέση αυτή προκύπτει ότι το πλάτος Α καθορίζεται από την ενέργεια της ταλάντωσης, δηλαδή από την ενέργεια που προσφέραμε αρχικά στο σύστημα ώστε να αρχίσει να ταλαντώνεται. Σε όλη την διάρκεια της ταλάντωσης η ενέργεια παραμένει σταθερή. Η ενέργεια μιας απλής αρμονικής ταλάντωσης είναι σταθερή και ανάλογη µε το τετράγωνο του πλάτους της.

Απόδειξη της παραπάνω σχέσης. Αν το σώμα βρίσκεται ακίνητο στην θέση ισορροπίας, για να μετακινηθεί σε µια άλλη θέση πρέπει να του ασκηθεί κατάλληλη εξωτερική δύναμη Fεξ . Κατά την μετακίνηση αυτή θα ασκείται στο σώμα και η δύναμη επαναφοράς. 

Για να μετακινηθεί το σώμα στην θέση (x) θα πρέπει το μέτρο της εξωτερικής δύναμης να είναι ίσο µε το μέτρο της δύναμης επαναφοράς και να έχει αντίθετη φορά, σε κάθε χρονι…

Ταλάντωση και Ελατήριο

Ελατήριο ονομάζεται ένα μηχανικό εξάρτημα το οποίο έχει την ικανότητα να αποθηκεύει μηχανική ενέργεια παραμορφώμενο προσωρινά. Συνήθως το σχήμα είναι ελικοειδές, αλλά υπάρχουν και ελατήρια σε σχήμα ράβδου, οι σούστες.
Το κάθε ελατήριο μπορεί να παραμορφωθεί ως προς μία διάστασή του υπό την επίδραση δύναμης. Όταν ασκείται δύναμη σε αυτήν τη διάσταση, το ελατήριο παραμορφώνεται αποθηκεύοντας το έργο της δύναμης.
Ιδανικό ελατήριο Σε ιδανικά θεωρητικά ελατήρια ισχύει απόλυτα ο νόμος του Hook, δε χάνεται ενέργεια στο περιβάλλον και τα ελατήρια μπορούν πάντα να επιστρέψουν στο αρχικό τους μήκος. Επίσης η μάζα του ιδανικού ελατηρίου θεωρείται αμελητέα. [Στην πραγματικότητα χάνεται μικρό ποσό ενέργειας στο περιβάλλον ως θερμική ενέργεια, ενώ η παραμόρφωση μπορεί να γίνει μόνιμη. Κάθε ελατήριο έχει κάποια όρια αντοχής αν τα υπερβούν θα παραμορφωθεί ή θα σπάσει. Επιπλέον, με την επαναλαμβανόμενη χρήση το υλικό χάνει τις ιδιότητές του λόγω μηχανικής κόπωσης και αν δεν αντικατασταθεί θα σπάσει.]

Νόμο…

Απλή Αρμονική Ταλάντωση (Α.Α.Τ) - Συνισταμένη Δύναμη

Από την Α΄ Λυκείου γνωρίζεις τον θεμελιώδη νόμο της Μηχανικής (2ος νόμος του Newton), ΣF=mα. Επίσης, όπως γνωρίζεις για να υπάρχει επιτάχυνση πρέπει να υπάρχει και δύναμη που ασκείται σε κάποιο σώμα. Στην Α.Α.Τ. ισχύει α=-ω2x, ο συνδυασμός αυτών των δυο σχέσεων δίνει τη σχέση: 
ΣF=-m ω2x Από τη σχέση αυτή φαίνεται ότι όταν ένα σώμα εκτελεί απλή αρμονική ταλάντωση η συνολική δύναμη που δέχεται είναι ανάλογη με την απομάκρυνση του σώματος από την Θ.Ι. της τροχιάς του και έχει αντίθετη φορά από αυτήν. Όταν το σώμα περνά από την Θ.Ι. η συνολική δύναμη που δέχεται ισούται με μηδέν. (Για το λόγο αυτό, ονομάζεται θέση ισορροπίας της ταλάντωσης). Επίσης, στις ακραίες θέσεις της ταλάντωσης η ΣF είναι μεγίστη.


Στο βίντεο δες το διάνυσμα της δύναμης επαναφοράς (είναι πάντα προς την θέση ισορροπίας). 



Αν συμβολίσουμε το γινόμενο mω2 με D (που είναι σταθερό για κάθε ταλαντωτή), δηλαδή D = mω2
Τότε θα έχουμε τη σχέση που δίνει τη δύναμη:F = −Dx (Μάθε την απόδειξη)

Η παραπάνω σχέση είναι γνωστή και σαν συν…

Θέματα πανελληνίων εξετάσεων: Ταλαντώσεις

Τα θέματα των πανελληνίων μπορείς να τα δεις κι εδώ, αλλά σ’ αυτό το αρχείο θα βρεις όλα τα θέματα από το 2001 ως το 2012 τα οποία αναφέρονται στις ταλαντώσεις, αποκλειστικά,  μηχανικές, ηλεκτρικές. Καλή δουλειά σου εύχομαι.